P7 library

P7 library

P7 library

Contents
[aidgoTe [¥To1 4 To] o ROU O T TP PSPPI VRPN 3
[DIT=Tot o] V) o o U ot (U] =P PPPPRPPPPPPPPPPPRE 4
COMPONENTS OVEIVIEW ..uvvviiiiiiiiiiiiiiiiiiieeatataeaeaaaeaeaeaeeeaaaeaeaaaeaeaeaaaaaaaaaaaaaaaaaaaaaaaaanannnssnnsnsssssssssssnsnsssnnssnsnsnsnsnnnn 5
1 o= OO PPPPPPTTR 6
=1 1=T0 0= VPP 7
Y o 1=T=To IR =T PSPPI 9
TR P2 Eu ol gl o F- = L4 L=l 11 £ ST 11
L 1 o T=Y VT] =Y = Yol <1 U S 13
(01T oL 0 =] o T T PO TP PP OTOUPRUPPN 13
(68 101 =] o - [O O TP P PP PP PP 14
NI ACE ettt et e b e s bt s at e sttt e b e e bt e ehe e ettt e e bt e nbe e nheesaeesane e 16
(6 101 (=T o - Tol ST PRUPRRPPR 18
VA a1 T TN T 0N =T o [T 20
TrACE INTEITACE ..eeeietee ettt ettt st e sttt s bt e e s bt e e bbeesabeesbbeesabeesabeeeaateesabeeesareens 21
Trace VEIDOSILY [EVEIS .. .eiiiiiiee et e e e et e e st e e e sratae e e ssntaeeeesnsbeeesnnsseeen 21
Lol (o 0 0 4= A (T o = U 21
(68 101 1= o - ol IO TSP UUPROPRRRPPR 22
(O] 0) (=T s - [ol I T T T PO TSP O PP POTOTOUPRRPPPPI 26
(€ 10 (=T o = Lol TP SRR 32
VA aTeT TN Ta N T o - [OSSP 35
BT VT] (=] =Tl < R 38
(00T o} 1= {U T 1 4 oo VO URS 38
(0 101 1= o - [l TP UP PR PRRPP 38
(O 101 =T 1ol TSP PP 41
(6 T 1 =T o - Tol SO SO PP 44
VA o ToT 10N =T o 7 [T RSP 46
P7 iNStances redistribULING.....ccic i e e e e et e e e e st e e e e sbae e e e s aaaee s 49
o Tol T ol (U1 o o ¥ T oo | o= SRS 50
(60T 0] o1 =14 o o O SR 51
Shared library (dll, SO) @XPOrt fFUNCLIONS......cccuiiiieiiie e ettt e e et e e e eaae e e e 52

[T 4] o1 [T USSR 53

P7 library

Introduction

P7 is cross platform library for handling your needs in delivering & storing your trace/log messages and
telemetry data (CPU, memory, buffers utilization, threads cyclograms, etc.)

Basic facts:

e C++/C/C#/Python interfaces are available
e Cross platform (Linux x86/x64, Windows x86/x64)
e Speed is priority, library designed to suit high load (for details see speed measurement chapter),
for example average performance for Intel i7-870 is:
o 50000 traces per second - 0,5% CPU, max ~3.3 million traces per second to network,
~5.3 million traces per second to file
o 110000 samples per second - 0,5% CPU, max ~3.8 million per second to network, ~6.0
million per second to file
e Thread safe
e Unicode support (UTF-8 for Linux, UTF-16 for Windows)
e No external dependencies
e High-resolution time stamps (resolution depends on HW high-resolution performance counter,
usually it is 100ns)
e Different sinks (transport & storages) are supported:
o Network (Baical server)

o File
o Auto (Baical server if reachable, else - file)
o Null

e Files rotation setting (by size or time)

e Files max count setting (deleting old files automatically)

e Remote management from Baical server (set verbosity per module, enable/disable telemetry
counters)

e Providing maximum information for every trace message:

o Format string

Function name

File name

File line number

Module ID & name (if it was registered)

Trace ID

Sequence Number

Variable arguments

Level (error, warning, .. etc.)

Time with 100ns granularity

Current thread ID

Current thread name (if it was registered)

o Current processor number

e Shared memory is used — create your trace and telemetry channels once and access it from any
process module or class without passing handles

e Simple way (one function) to flush all P7 buffers for all P7 objects in case of process crush

e Trace & telemetry files have binary format (due to speed requirements — binary files much more
compact than raw text), export to text is available

O 0O O O O O O O 0 O O

P7 library _

Directory structure

e Examples
o C

o C#
o Cpp
o Python
e Documentation
e Headers
o GTypes.h — main types which are used by P7 (C/C++)

o P7 Client.h — P7 client interface (C++ only)
o P7 Telemetry.h — P7 telemetry interface (C++ only)
o P7 Trace.h —P7 trace interface (C++ only)
o P7 Extensions.h — P7 extensions types (C++ only)
o P7 Cproxy.h - P7 client, trace & telemetry proxy interface for C language, use it with
static library (lib/a) or shared library (dll/so) integration
e Shared
e Sources
o Tests

o Speed — check the speed of traces & telemetry delivering on your hardware
o Trace —few stability tests joined into one console application
e Wrappers
o C#
o Py
e build.sh — Linux compilation script, builds library itself (static & shared), examples, tests
e License.txt — library license
e P7.sIln—Visual Studio 2010 solution

Components overview

Internally P7 has very simple design, and consist of few modules:

P7 library

Channel — named data channel, used for wrapping user data into internal P7 format. For now
there are next channels types are available:

o Telemetry
o Trace

Sink — module which provides a way of delivering serialized data from channels to final
destination. Next types are available for now:

o Network — deliver data directly to Baical server
o File — writes all user data into single binary file

o Auto —delivers to Baical server if it is reachable otherwise to file
o Null —drops all incoming data, save CPU for the hosting process
Client —is a core module, it aggregate sink & channels together and manage them. Every client

object can handle up to 32 independent channels

Let’s take an example (diagram below) — developed application has to writes 2 independent log (trace)
streams and 1 telemetry stream, and delivers them directly to Baical. Initialization sequence will be:

1.
/P7.Addr=127.0.0.1"
2. Using the client create:
/ P7 Client instance
Sink:
Network (Baical)
File
Auto (Biacal if available, else -
file)
Null
Channels
00 01 02
Trace B
“Core” |~
Trace »
“Module A” |~
Telemetry

“CPU, MEM”

First of all you need to create P7 Client, and specify parameters for sink “/P7.Sink=Baical

a. create first trace channel with name “Core”
b. create second trace channel named “Module A”
c. create telemetry channel named “CPU, MEM”

\

Data flow

31

U —

P7 library _

Trace
From software engineer point of view trace is a source code line (function with variable arguments list):

IP7/_Client *|_i1Client
IP7_Trace *1_iTrace

P7_Create_Client(T™M("'/P7.S1nk=Baical /P7.Addr=127.0.0.1"));
P7_Create_Trace(l_iClient, ("TracecChannel™));

1_iTrace-> (0, ("Test trace message #%d"), 0);

And at another side it looks like that (internal Baical logs):

& e
View Navigation Search Filtering Export Info Filtered (100 %)
[0 || 3122014 23:50:50.900 || & » | & » | & » () shortauts
#* D Level Module Proc. Thread Time Text
17 1026 Info 0 1 Main (0x1758) 56:25.351'091"4 uUse address = [::1]1:9009

18 1026 Info 0

19 1027 Info srv/Addr (6)
20 1027 Info srv/Addr (6)
23 1028 1Info Baical (1)

il Main (0x1758) 56:25.351"'377"1 Use address = 127.0.0.1:9009 —
0 srvAddr (0x060c) 56:25.351°433"1 [8] Start ...
0 srvAddr (0x0d60) 56:25.351°696"6 [9] Start ...
0 Core (0x0d14) 56:25.355"696"3 Start core baical thread
24 1029 Info srv/Addr (6) dls SrvAddr (0x0d60) 56:25.874'559"7 [9] New client, ID = 65535, Prev. connection addr = 0
26 1031 Info Srv/Addr (6) 1 SrvAddr (0x0d60) 56:25.874'559"9 [9] Add connection 9000001, Client ID = 0, List lengt.
28 1033 Info Prv/Net (3) 0 Core (0x0d14) 56:25.881"270"3 [0x01956980] Create connection, 0x03833018, number = 1
0
0
0
0
1
1

v

29 1034 1nfo Prv/Net (3) Core (0x0d14) 56:25.891'476"8 [0x01956980] Create channel, ID 1, Channel 0
30 1035 Info Baical (1) Core (0x0d14) 56:25.891'482"7 Add stream ID = 1

31 1034 Info Prv/Net (3) Core (0x0d14) 56:25.893'570"5

32 1035 Info Baical (1) Core (0x0d14) 56:25.893"'574"8 Add stream ID = 2

3954 1038 warning U1 (14) Ul (0x1614) 01:30.541'695"6 Unable to establish connection, try again
4708 1039 Trace Tel/Vwr/Rnd (12) Main (0x1758) 19:2

v

w

.731'736"9 [0x068929E0Q] Render cmd, offset = 0

P7P.cpp
CP7Shell::Create_Channel, line 1059

It is very similar to logging, but unlike logging - trace gives your much more freedom, you don’t have to
choose which information to write, you may write everything (without impacting on application
performance, 50k traces per second with 0.5% CPU for example, for details see Speed test chapter) and
then during debugging session use flexible filtering engine to find interesting parts, in this case you will
be sure that all necessary information is available for you.

This approach became possible due to P7 performance. Trace module was designed with the idea of
performance, especially on small embedded system.

To be able to send so much information next optimizations are used:

e Do not delivers & records duplicated information every time — the most heavy text fields
[Format string, Function name, File name, File line number, Module ID] are delivered & recorded
once - only for first call (the same information will be transmitted once in case of new
connection establishing)

e Do not format trace string on client side, variable arguments formatting is a heavy operation
and it will be done on server side by request

e Deliver only changes for every subsequent trace call [variable arguments, sequence number,
time with 100ns granularity, current thread, processor core number]

N.B.: The best performance is provided by C++ and C interfaces (release build), C# & Python wrappers
provides less performing solutions.

P7 library

Telemetry
From software engineer’s point of view telemetry is a few source code lines:

IP7_Client *1_hClient
IP7_Telemetry *1_hTelemetry
tUINTS8 1_bCpuId
tUINTS8 1_bMem1d
tINT64 1_11cpPu
tINT64 1_11Mem

P7_Create_Client(T™M("/P7.Sink=Baical /P7.Addr=127.0.0.1"));
P7_Create_Telemetry(l_hClient, ("AppStatistics"));

1_hTelemetry->Create(TmM("System/cpPu"), 0, 100, 90, 1, & T_bCpuld);
1_hTelemetry->Create(TM("System/Mem(mb)"), 0, 500, 450, 1, & 1_bMemId);

while ()
{

1_pTelemetry->Add(1_bCpuid, 1
:

1CPU);
1_pTelemetry->Add(1_bmemId, M

_1
_1Tmem) ;

And at another side it looks like that:

& | S
View Search Export Closed
| 12.08.2014 22:09:54.561'000"0 | &« 3 | 3 Shortcuts | [Folder

50.0 ms 150.0ms | s 2500 ms 3000 ms

T T I T

op——

16.03.2015 00:47:07.511'000"0 00:00:00.885'000"0 16.03.2015 00:47:08.396'000"0
Group/Mame Visible MinY MaxY Min (wnd/total) Max (wnd/total) Avg (wnd/total) Count Section Algo Line
4 Threads

Renderer W -fo -f1 0/0 1/1 0/0 74 154 01 Cyclogram
ProcessorA Fl -fo -f1 o/ 1/1 o/0 49 930 02 Cyclogram
ProcessorB Fl -fo -f1 o/0 11 0/0 77 858 03 Cyclogram
GeneratorA -fo -f1 o/ 1/1 o/0 252 925 11 Cyclogram
GeneratorB -fo -f1 -fo -fo 0/-9223372... 0 11 Cyclogram
GeneratorC -f0 -1 0/0 11 0/0 1666 360 11 Cyclogram
4 Duration
Renderer: Scenel v -fo 100/1000 0/0 116/203 0/0 151 160 04 Range
Renderer: Scene? ¥ -fo 100/1000 O/0 142/142 41 126284 05 Range
Renderer: Scene3 v -f0 100/1000 0/0 6/341 0/0 126 284 06 Range
4 Buffers
Pipelinel 7 -0 10/100 1/0 2/2 1/1 24 998 07 Range
Pipeline2 v -f0 10/100 1/0 71/72 5/3 38 316 08 Range
Pipeline3 -/o 10/100 1/0 1/2 1/1 25102 11 Range

Telemetry is a simple and fast way to record any dynamically changed values for further or real time
analysis on Baical server side. You may use it for a lot of things: system statistics (cpu, memory, hdd,
etc.), buffers filling, threads cyclograms or synchronization, mutexes, networks delays, packets sizes, etc.
There are plenty of possible usage cases.

Some facts about telemetry:

e Every telemetry channel can handle up to 256 independent counters

P7 library _

e No (or minimal) impact on application performance — on modern hardware (2014) spend only
300 ns for processing one telemetry sample (add(...) -> network -> Baical srv -> HDD), it is about
220 000 of samples per second with about 1% CPU usage

e You can enable or disable counters online from Baical server — it allows you visualize and record
only necessary data

e Every telemetry sample contains 64 bit signed value & high resolution time stamp

N.B.: The best performance is provided by C++ and C interfaces, C# & Python wrappers provides less
performing solutions.

P7 library _

Speed tests

P7 library was designed with the idea of performance, such approach allows software engineer to
deliver maximum information about program execution in real-time with minimum resources
consumption, and next few tests on different platforms will have to confirm this statement.

Test conditions:

e Test application sent traces & telemetry data in cycle & make time measurement

e P7 library use next option /P7.Sink=Baical, this means all data goes through network interface to
the Baical server (loopback network interface is used)

e Every trace messages contains next fields: format string, function name, file name, file line
number, module ID, variable arguments, sequence number, time with 100ns granularity,
current thread, module ID, processor core number

e Every telemetry sample contains next fields: counters ID, sample value, sample time with 100ns
granularity

e Baical server will receive & save incoming data

Test results for trace channel:

e ARM 926EJ (v5) - 1 000 per second - 0,5% CPU, ~20 000 per second max
e Intel E8400 (Core 2 duo) -15 000 per second - 0,5% CPU, ~750 000 per second max
e Intel i7-870 - 50 000 per second - 0,5% CPU, ~3.3 million per second max

Test results for telemetry channel:

e ARM 926EJ (v5) - 2 000 samples per second - 0,5% CPU, ~50 000 per second max
e Intel E8400 (Core 2 duo) - 25 000 samples per second - 0,5% CPU, ~1.2 million per second max
e Intel i7-870 - 110 000 samples per second - 0,5% CPU, ~3.8 million per second max

Next screenshot shows delay between 2 trace messages about 200 nanoseconds on modern hardware
(2014):

(& p SRawan L N b =)
View Navigation Search Filtering Export Info Filtered (100 %)
Go to index Go to time Warning+ Error+ Critical Keyboard
[o |l s1i2201423:50:50000 || & W | & » | & B» | () shorteus
#* D Level Module Froc. Thread Time Text

17 1026 Info 0
18 1026 Info 0
19 1027 Info srv/Addr (6)
20 1027 Info srv/Addr (6)

il Main (0x1758) 56:2
il Main (0x1758) 56:2
0 SrvAddr (0x060c) 56:25.351'433"1 [8] Start ...
0 srvAddr (0x0d60) 56:25.351'696"6 [9] Start ...
23 1028 Info Baical (1) 0 Core (0x0d14) 56:25.355"696"3 Start core baical thread
24 1029 Info srv/Addr (6) 1 srvAddr (0x0d60) 56:25.874'559"7 [9] New client, ID = 65535, Prev. connection addr = 0
26 1031 Info srv/Addr (6) 1 srvaddr (0x0d60) 56:25.874'559"9 [9] Add connection 9000001, Client ID = 0, List lengt..
0
0
0
0
0
1
1

v

.351'091"4 Use address = [::1]:9009
.351'377"1 Use address = 127.0.0.1:9009 =

v

28 1033 Info Prv/Net (3) Core (0x0d14) 56:25.881'270"3 [0x019569B0] Create connection, 0x03833018, number = 1
29 1034 1nfo Prv/Net (3) Core (0x0d14) 56:25.891"476"8 [0x019569B0] Create channel, ID 1, Channel 0

30 1035 Info Baical (1) Core (0x0d14) 56:25.891"'482"7 Add stream ID = 1 |I
31 1034 Info Prv/Net (3) Core (Ox0d14) 56:25.893'570"5

32 1035 Info Baical (1) Core (0x0d14) 56:25.893"'574"8 Add stream ID = 2

3954 1038 warning ul (14) Ul (0Ox1614) 01:30.541'695"6 Unable to establish connection, try again
4708 1039 Trace Tel/vwr/Rnd (12) Main (0x1758) 19:25.731'736"9 [0x068929E0] Render cmd, offset = 0

v

F7E.cpp
CF75hell::Create_Channel, line 1059 “

You may build & run your own speed tests to estimate library performance on your hardware and
compare the performance of printing to the memory buffer, console and P7 trace channel, to do that
you need:

e Compile under Linux or Windows project <P7 folder>\Tests\Speed. You can do it by using P7.sIn
for visual studio or linux shell script — build.sh

e Generated binaries are located in <P7 folder>\Binaries

e Run the generated binary (Windows: Speed64.exe/Speed32.exe, Linux: Speed)

P7 library

o Record to local file: >SpeedXXX /P7.Sink=File
o Deliver to Baical server: >SpeedXXX /P7.Sink=Baical /P7.Addr=127.0.0.1

Next diagram shows the test result on Intel i7-870 platform and saving trace messages to file:

[: - - EERE ===

& - - e

Navigation Search Export

Scale FPS max FPS actual Counters Samples Duration File size

[10 ms ~||[zs ~|| 23(4ms) 3 3000 00:00:00.998'999"9 102.3 Kb
[13s

0.0 [t00.0ms |2000ms [300.0ms [|400.0ms [500.0ms |600.0ms [700.0ms |BO0.0ms [s00.0ms (1.0 [11s |12 s

Printing speed:

* P7 trace: § 210 000 per sec
* Buffer: 688 000 per sec

* Console: 10 Q00 per sec

A nnnnooo
16.03.2015 00:50:38.404'000"0 00:00:01.500'000"0 16.03.2015 00:50:39.904'000"0

Group/Name Visible MinY MaxY Min (wnd/total) Max (wnd,total) Avg (wndftotai) Count Section Algo Line
4 Print

To P7trace -0 -/5200000 0/0 5210 525/5 257 893 2 607 867/2 628 946 1 000 Range

To Buffer -0 -/5200000 0/0 688 050/694 305 344 368/347 152 1000 Range

To Console -fo -/5200000 0/0 10 890/10 989 5450/5 494 1000 Range

P7 library

Initialization parameters

Initialization parameters is a string like: “/P7.Sink=Baical /P7.Addr=127.0.0.1 /P7.Pool=4096"

Initialization parameters are used by every instance of P7 client - when you are going to create your P7
client instance you have to specify parameters for it or pass empty/NULL string to use default values.

You may pass hardcoded parameters directly to the client like that:

#include "GTypes.h"
#include "P7_Client.h"
main(i_1ArgcC, * i_pArgVv[])

IP7_Client *1_pClient P7_Create_Client(T™M("/P7.Sink=Baical"));

#include "GTypes.h"
#include "P7_Cproxy.h"
main(i_1ArgcC, * i_pArgVv[])

hP7_Client *1_pClient P7_Client_Create(T™M("/P7.Sink=Baical"));

CSharp_Example
Program

Main([]1 args)

P7.Client 1_pClient = P7.Client("/P7.Sink=Baical");

.Register_Client(P7.UTF(u"MyClient"), .UTF(u"/P7.Sink=Baical"))

Or you may pass parameters through command line (if you are using both modes — console parameters
have priority over hardcoded parameters):

Next parameters are common for all possible sink:

e “/P7.Sink” - Select data flow direction, there are few values:
o “Baical” — deliver to Baical server over network
o “File” — into afile
o “Auto” — deliver to Baical if connection is established, otherwise to file (connection
timeout is 250 ms)
o “Null” - all data will be dropped

Default value is “Baical”. Example: “/P7.Sink=Auto”

P7 library

e “/P7.Name” —P7 client instance name, max length is about 96 characters, by default name of
host process is used (preferred mode). For script languages where host process is script
interpreter you may use this option. Example: “/P7.Name=MyChannel”

e “/P7.0n” — option allows enable/disable P7 client, by default P7 is on (1). Example “/P7.0n=0"

e “/P7.Verb” —P7 library has internal logging mechanism(OFF by default), using this option you
can set logging verbosity and automatically enable logging, next values are available:

o “0”-info

o “1”—-debug

o “2”—warning

o “3”—error

o “4” —critical
For example “/P7.Verb=0". For Linux all P7 internal logs will be redirected to console stdout, for
Windows folder “P7.Logs” will be created in host process folder and all further logs will be
stored there.

e “/P7.Pool” —set maximum memory size available for internal buffers in kilobytes. Minimal
16(kb), maximal is limited by your OS and HW, default value is 4096 (4mb). Example if 1Mb
allocation: “/P7.Pool=1024"

e “/P7.Help” — print console help

Next parameters are applicable for “/P7.Sink=Baical” or “/P7.Sink=Auto”:

e “/P7.Addr” —set Baical server network address (IPV4, IPV6, NetBios name). Example:
“/P7.Addr=::1", “/P7.Addr=127.0.0.1", “/P7.Addr=MyPC”

e “/P7.Port” — set Baical server listening UDP port (default is 9010), example: “/P7.Port=9010"

e “/P7.PSize” —set transport packet size. Min value is 512 bytes, Max - 65535, Default — 512.
Example: “/P7.PSize=1472" . Bigger packet allows transmit data with less overhead, but if you
specify packet larger than your network MTU — there is a risk of transmission losses. P7 network
protocol handles packets damaging and loss and retransmit necessary data chunks, but if packet
is bigger than MTU — P7 can’t correctly process such situation for now.

e “/P7.Window” —size of the transmission window in packets, used to optimize transmission
speed, usually it is not necessary to modify this parameter. Min value — 1, max value — ((pool
size / packet size) / 2).

e “/P7.Eto” —transmission timeout (in seconds) when P7 object has to be closed. Usage scenario:

Application sending data to Baical server through P7

For some reasons connection with Baical has been lost

Some data are still inside P7 buffers and P7 tries to deliver it

Application is closed by user and “/P7.Eto” value is used to specify time in second during

which P7 will attempts to deliver data reminder.

O O O O

Next parameters are applicable for “/P7.Sink=File” or “/P7.Sink=Auto”:

e “/P7.Dir” — option allows to specify directory where P7 files will be created, if it is not specified
process directory will be used, examples: “/P7.Dir=/home/user/logs/”, “/P7.Dir=C:\Logs\”
e “/P7.Roll” — use option to specify files rolling value & type. There are 2 rolling types:
o Rolling by file size, measured in megabytes (“mb” command postfix)
o Rolling by time, measured in hours, 1000 hours max (“hr” command postfix)
Examples: “/P7.Roll=100mb”, “/P7.Roll=24hr”
e “/P7.Files” — option defines maximum P7 logs files in destination folder, in case if count of files is
larger than specified value - oldest files will be removed. Default value is OFF (0), max value —
4096. Example: “/P7.Files=4096"

P7 library

P7 library interfaces

Client interface

Client is a core module of P7 library, working with the library start form client creation. Client is
responsible for delivering your traces & telemetry data into final destination.

Every client object can handle up to 32 independent channels.

Number of clients per process is limited by available memory.

P7 library

C++ interface
Client header file is located in <P7>/Headers/P7_Client.h

P7 Create_Client
Function allows to create P7 client object

IP7_Client *P7_Create_cClient(

Parameters: argument string, see “Initialization parameters” chapter for details

Return:

e Valid pointer to IP7_Client interface in case of success
e NULL in case of failure

P7_Get_Shared
This functions allows you to get P7 client instance if it was created by someone else inside current
process and shared using IP7_Client::Share(...) function.

Sharing mechanism is very flexible way to redistribute your IP7_Client object among your modules
without passing pointer to it and modification your interfaces, function is thread safe.

IP7_Client *P7_Get_Shared(

Parameters: name of previously shared P7 client instance
Return:

e Valid pointer to IP7_Client interface in case of success
e NULL in case of failure

N.B.: Every successful call of this function increase reference counter value on retrieved IP7_Client
object, do not forget to call Release() function

P7_Exceptional_Flush

Function allows to flush (deliver) not delivered/saved P7 buffers for all opened P7 clients and related
channels owned by process in CASE OF your app/proc. crush. This function does not call system
memory allocation functions only write to file/socket.

Classical scenario: your application has been crushed you catch the moment of crush and call this
function once.

To read more about this function & usage scenario you may in chapter Process crush handling
N.B.: DO NOT USE OTHER P7 FUNCTION AFTER CALLING THIS FUNCTION

P7_Exceptional_Flush()

IP7_Client::Add_Ref
Function increase object reference counter

tINT32 Add_Ref()

P7 library

Return: object’s reference counter new value

IP7_Client::Release
Function decrease object reference counter, object will be destroyed when reference counter is equal to
0.

tINT32 Release()

Return: object’s reference counter new value

IP7 Client::Share

Function allows to share current client instance in address space of current process. Sharing mechanism
is very flexible way to redistribute your IP7_Client object among your modules without passing pointer
to it and modification your interfaces, function is thread safe.

tBOOL Share(*i_pName)

Parameters: name of shared P7 client instance, should be unique
Return:

e TRUE - success
e FALSE —failure, the other object with the same name is already shared inside current process

P7 library

C interface
Client header file is located in <P7>/Headers/P7_Cproxy.h

P7 Client _Create
Function allows to create P7 client object

hP7_cClient P7_Client_Create(

Parameters: argument string, see “Initialization parameters” chapter for details

Return:

e Valid handle of P7 client object in case of success
e NULL in case of failure

P7 _Client_Get_Shared

This functions allows you to get P7 client instance if it was created by someone else inside current
process and shared using P7_Client_Share(...) function.

Sharing mechanism is very flexible way to redistribute your P7 client object among your modules
without passing pointer to it and modification your interfaces, function is thread safe.

hP7_cClient P7_Client_Get_Shared(*i_pName)

Parameters: name of previously shared P7 client instance
Return:

e Valid handle of P7 client object in case of success
e NULL in case of failure

N.B.: Every successful call of this function increase reference counter value on retrieved hP7_Client
object, do not forget to call P7_Client_Release(...) function

P7_Exceptional_Flush
Function is described in C++ chapter P7_Exceptional Flush.

P7_Client_Add_Ref
Function increase object reference counter

tINT32 P7_Client_Add_Ref(hP7_Client i_hClient)

Parameters: P7 client handle

Return: object’s reference counter new value

P7_Client_Release
Function decrease object reference counter, object will be destroyed when reference counter is equal to
0.

tINT32 IP7_Client::Release(hP7_Client i_hClient)

P7 library

Parameters: P7 client handle

Return: object’s reference counter new value

P7 Client_Share

Function allows to share current client instance in address space of current process. Sharing mechanism
is very flexible way to redistribute your P7 client object among your modules without passing pointer to
it and modification your interfaces, function is thread safe.

tBOOL P7_Client_Share(hP7_client i_hClient, *i_pName)

Parameters:

e i_hClient —P7 client object handle
e i_pName —name of shared P7 client instance, should be unique

Return:

e TRUE - success
e FALSE —failure, the other object with the same name is already shared inside current process

P7 library

C# interface
C# shell file is located in <P7>/ Wrappers/C#/P7.cs

C# shell depending on P7x64.dll/ P7x32.dll you may generate them by building P7 solution

P7.Client
Constructor allows to create P7 client object

P7.Client(String i_sArgs)

Parameters: argument string, see “Initialization parameters” chapter for details

Return:

e Valid P7 client class instance in case of success
e ArgumentNullException(...) in case of failure

P7.Get_Shared

This functions allows you to get P7 client instance if it was created by someone else inside current
process and shared using P7::Client::Share(...) function.

Sharing mechanism is very flexible way to redistribute your P7 client object among your modules
without passing pointer to it and modification your interfaces, function is thread safe.

P7.Client Get_Shared(String i_sName)

Parameters: name of previously shared P7 client instance
Return:

e Valid P7::Client instance in case of success
e nullin case of failure

P7.Exceptional_Flush_Buffers
Function allows to flush (deliver) not delivered/saved P7 buffers for all opened P7 clients and related
channels owned by process in CASE OF your app/proc. crush.

Function is completely described in C++ chapter P7_Exceptional Flush.

P7.Exceptional_Buffers_Flush()

P7.Client.Add_Ref
Function increase object reference counter

System.Int32 Addref()

Return: object’s reference counter new value

P7.Client.Release
Function decrease object reference counter, object will be destroyed when reference counter is equal to

©

P7 library

System.Int32 Release()

Return: object’s reference counter new value

P7.Client.Share

Function allows to share current client instance in address space of current process. Sharing mechanism
is very flexible way to redistribute your P7 client object among your modules without passing pointer to
it and modification your interfaces, function is thread safe.

Share(String i_sName)

Parameters: name of shared P7 client instance, should be unique
Return:

e true — success
e false —failure, the other object with the same name is already shared inside current process

P7 library

Python interface
Python shell file is located in <P7>/ Wrappers/Py/P7.py

Python shell depending on P7x64.dll/P7x32.dIl (Windows) and libP7.so (Linux) you may generate them
by building P7 solution under Windows or run build.sh under Linux

Importing
To import P7 Python shell you have to specify “P7_Bin” environment variable, using that path P7 python
shell will find P7 dll/so shared library, and update system path by P7.py directory.

Here is an example:

1_s$ath =h .path.dirname(os.path.realpath(__file_)) + "/../../Wrappers/pPy/";
_sPat

.path:
.path.insert(0, 1_sPath)

1_spPath = .path.dirname(os.path.realpath(__file_)) + "/../../Binaries/";
1_sPath .environ["PATH']:
.environ['"PATH'] += .pathsep + 1_sPath;
.environ['P7_BIN'] = T_sPath;

P7.Register_Client
Function allows to register P7 client in address space of current python session (execution one or group
of depended scripts)

.Register_cClient(, =)

Parameters:

e i_sName — name of P7 client, should be unique, used for sharing P7 client in address space of
current python session
e i_sArguments —argument string, see “Initialization parameters” chapter for details

Return:

e True in case of success
e False in case of failure

P7 library

Trace interface

Trace verbosity levels
C++ trace levels are described in header file is located in <P7>/Headers/P7_Trace.h

eP/Trace_Leve

#define
#define
#define
#define
#define
#define

Trace format string
C++/C interfaces supports variable arguments format string, like Trace("Value = %d, %08x", 10, 20).

Next field characters are supported:

e type field characters: 1,I,h,w,c,C,d,i,o,u,x,X,p,n,S,s,eEfgG,a, A

o prefixes and format-Type specifiers: 164, 132,11, 1, h, |, w
Full documentation about format string you can find here: http://msdn.microsoft.com/en-
us/library/56e442dc.aspx

http://msdn.microsoft.com/en-us/library/56e442dc.aspx
http://msdn.microsoft.com/en-us/library/56e442dc.aspx

P7 library

C++ interface
Trace header file is located in <P7>/Headers/P7_Trace.h

P7 Create_Trace
Function allows to create IP7_Trace object

IP7_Trace* P7_Create_Trace(IP7_Client *i_pClient, *i_pName)

Parameters:

e i_pClient — pointer to client object

e i_pName —name of the trace channel
Return:

e Valid pointer to IP7_Trace object in case of success
e NULL in case of failure

P7_Get_Shared_Trace
This functions allows you to get P7 trace instance if it was created by someone else inside current
process and shared using IP7_Trace::Share(...) function.

Sharing mechanism is very flexible way to redistribute your IP7_Trace object among your modules
without passing pointer to it and modification your interfaces, function is thread safe.

IP7_Trace *P7_Get_Shared_Trace(*i_pName)

Parameters: name of previously shared P7 trace instance
Return:

e Valid pointer to IP7_Trace interface in case of success
e NULL in case of failure

N.B.: Every successful call of this function increase reference counter value on retrieved IP7_Trace
object, do not forget to call Release() function

IP7_Trace::Add_Ref
Function increase object reference counter

tINT32 Add_Ref()

Return: object’s reference counter new value

IP7 Trace::Release
Function decrease object reference counter, object will be destroyed when reference counter is equal to
0.

tINT32 Release()

Return: object’s reference counter new value

P7 library

IP7 Trace::Register_Thread

Function register thread name using it ID, used to match later on Baical side thread ID and human
readable thread name. Call this function when new thread is created and do not forget to call
Unregister_Thread when thread has to be closed.

tBOOL Register_Thread(*i_pName, tUINT32 i_dwThreadId)

Parameters:

e i_pName — thread name
e i_dwThread_ID - ID of the thread, if i_dwThread_ID == 0 then current thread ID will be used.

Return:

e TRUE — success
e FALSE — failure

IP7_Trace::Unregister_Thread
Function unregister thread, used to match later on Baical side thread ID and human readable thread
name.

tBOOL Unregister_Thread(tUINT32 i_dwThreadid)

Parameters:
e i_dwThread ID - ID of the thread, if i_dwThread_ID == 0 then current thread ID will be used.
Return:

e TRUE — success
e FALSE —failure

IP7_Trace::Register_Module
Function register application module. If application or library which uses P7 contains different parts
(modular architecture) you may use this function. It allows you:

e To have nice output on Baical side, in addition to module ID — module name will be printed for
every trace message

e Independent verbosity level management for every module. Module verbosity may be set
online through Baical.

Usage of this function does not have an impact on performance of traces, modules information are
transmitted only once.

tBOOL Register_Module(*i_pName, IP7_Trace::hModule *o_hModule)

Parameters:

e i_pName — module name (case sensitive), if module with the same name is already exist —
handle to that module will be returned
e 0_pModule — module handle (output).

Return:

e TRUE - success
e FALSE —failure

P7 library

IP7 Trace::Set_Verbosity
Function sets trace channel verbosity level, all traces with less priority will be rejected, you may set
verbosity level on-line from Baical server.

Verbosity levels are described in chapter Trace verbosity levels.

Set_Verbosity(IP7_Trace: :hModule i_hModule, eP7Trace_Level 1i_everbosity)

Parameters:
e i_hModule — module handle, if handle is NULL global verbosity will be set for whole P7.Trace
object

e i eVerbosity —trace verbosity levels.

IP7 Trace::Share

Function allows to share current P7 trace instance in address space of current process. Sharing
mechanism is very flexible way to redistribute your IP7_Trace object among your modules without
passing pointer to it and modification your interfaces, function is thread safe.

tBOOL Share(*i_pName)

Parameters: name of shared P7 client instance, should be unique
Return:

e TRUE - success
e FALSE —failure, the other object with the same name is already shared inside current process

IP7 Trace:Trace
Function sent trace message, it has variable arguments list.

tBOOL Trace(tUINT16 1_wTrace_ID,
eP7Trace_Level i_eLevel,
IP7_Trace: :hmModule i_hModule,
tUINT16 i_wLine,

*i_pFile,
*i_pFunction,
*i_pFormat,

Parameters:

e i_wTrace_ID —hardcoded trace ID, possible range is [0 .. 1023]. This ID is used to match trace
data and trace format string on server side. You can specify this parameter in range [1..1023] if
you want to send a trace as quickly as possible. Otherwise you can put O - and this function will
work a little bit slowly, and ID will be auto-calculated

i_elevel —trace level (error, warning, debug, etc). Described in chapter Trace verbosity levels
i_hModule — module handle, it is useful for further filtering on Baical side, may be NULL

e i_wline —source file line number from where your trace is called (C/C++ preprocessor macro

__LINE_)

e i pFile —source file line number from where your trace is called (C/C++ preprocessor macro
__FILE_)

e i _pFunction —source file name from where your trace is called. (C/C++ preprocessor macro
__FUNCTION_)

e i_pFormat —format string (like "Value = %d, %08x"). Described in chapter Trace format string

e ... -variable arguments

P7 library

Return:

e TRUE - success
e FALSE —failure, there are few possible reasons for failure (for details see logs):
o No free buffers to store new trace, P7 client do not have enough time to deliver all
trace/telemetry messages and there is no free buffers
o Baical server is not available (if Sink is Baical)
o No free space on HDD (if Sink is file)

N.B.: DO NOT USE VARIABLES for format string, file name, function name! You should always use
CONSTANT TEXT like "My Format %d, %s", “myfile.cpp”, “myfunction”

To simplify function call you may use macro defined in <P7>/Headers/P7_Trace.h:

e P7_TRACE

e P7_DEBUG

e P7_INFO

e P7_WARNING
e P7_ERROR

e P7_CRITICAL

IP7 Trace::Trace_Embedded
Function is similar to Trace(...) function, but intended for embedding into existing logging/trace function
inside your code.

tBOOL Trace_Embedded(tUINT16 1_wTrace_ID,
eP7Trace_Level i_eLevel,
IP7_Trace: :hModule 1i_hModule,
tUINT16

Parameters:

e i_wTrace_ID —hardcoded trace ID, possible range is [0 .. 1023]. This ID is used to match trace
data and trace format string on server side. You can specify this parameter in range [1..1023] if
you want to send a trace as quickly as possible. Otherwise you can put O - and this function will
work a little bit slowly, and ID will be auto-calculated

i_elevel —trace level (error, warning, debug, etc). Described in chapter Trace verbosity levels
i_hModule — module handle, it is useful for further filtering on Baical side, may be NULL
i_wLine — source file line number from where your trace is called (C/C++ preprocessor macro
__LINE_)

i_pFile — source file line number from where your trace is called (C/C++ preprocessor macro
__FILE_)

e i _pFunction —source file name from where your trace is called. (C/C++ preprocessor macro
__FUNCTION_)

i_ppFormat — address of format string (like "Value = %d, %08x"). Described in chapter Trace
format string

Return:

e TRUE - success

P7 library

e FALSE —failure, there are few possible reasons for failure (for details see logs):
o No free buffers to store new trace, P7 client do not have enough time to deliver all
trace/telemetry messages and there is no free buffers
o Baical server is not available (if Sink is Baical)
o No free space on HDD (if Sink is file)

N.B.: DO NOT USE VARIABLES for format string, file name, function name! You should always use
CONSTANT TEXT like "My Format %d, %s", “myfile.cpp”, “myfunction”

IP7 Trace: Trace_Managed
Function is similar to Trace(...) function, but intended for usage with managed languages like C#, python,
VB, etc. It is not so efficient like Trace() or Trace_Embedded() functions (about 25% less efficient)

tBOOL Trace_Managed (tUINTL6 i_wTrace_ID,
eP7Trace_Level i_eLevel,
IP7_Trace: :hModule 1i_hModule,
tUINT16 i_wLine,

*i_pFile,
*i1_pFunction,
*1_pMessage

Parameters:

e i_wTrace_ID —hardcoded trace ID, possible range is [0 .. 1023]. This ID is used to match trace
data and trace format string on server side. You can specify this parameter in range [1..1023] if
you want to send a trace as quickly as possible. Otherwise you can put 0 - and this function will
work a little bit slowly, and ID will be auto-calculated

i_eLevel —trace level (error, warning, debug, etc). Described in chapter Trace verbosity levels
i_hModule — module handle, it is useful for further filtering on Baical side, may be NULL

e i _wLine - source file line number from where your trace is called (C/C++ preprocessor macro

__LINE_)

e i _pFile —source file line number from where your trace is called (C/C++ preprocessor macro
__FILE_)

e i _pFunction —source file name from where your trace is called. (C/C++ preprocessor macro
__FUNCTION_)

e i_pMessage — trace text messsage

Return:

e TRUE - success
e FALSE —failure, there are few possible reasons for failure (for details see logs):
o No free buffers to store new trace, P7 client do not have enough time to deliver all
trace/telemetry messages and there is no free buffers
o Baical server is not available (if Sink is Baical)
o No free space on HDD (if Sink is file)

C interface
Trace header file is located in <P7>/Headers/P7_Cproxy.h

P7_Trace_Create
Function allows to create P7 trace object

P7 library

hP7_Trace P7_Trace_Create(hP7_Client i_hcClient, *i_pName)

Parameters:

e i_pClient — client object handle

e i_pName — name of the trace channel
Return:

e Valid handle of P7 trace object in case of success
e NULLin case of failure

P7 Trace_Get_Shared
This functions allows you to get P7 trace instance if it was created by someone else inside current
process and shared using P7_Trace_Share(...) function.

Sharing mechanism is very flexible way to redistribute your hP7_Trace object among your modules
without passing pointer to it and modification your interfaces, function is thread safe.

hP7_Trace P7_Trace_Get_Shared(*i_pName)

Parameters: name of previously shared P7 trace instance
Return:

e Valid hP7_Trace handle of P7 trace object
e NULL in case of failure

N.B.: Every successful call of this function increase reference counter value on retrieved object handle,
do not forget to call P7_Trace_Release() function

P7_Trace_Add_Ref
Function increase object reference counter

tINT32 P7_Trace_Add_Ref(hP7_Trace 1i_hTrace)

Parameters:
e i_hTrace — Trace object handle

Return: object’s reference counter new value

P7 Trace_Release
Function decrease object reference counter, object will be destroyed when reference counter is equal to

0
tINT32 P7_Trace_Release(hP7_Trace i_hTrace)

Parameters:
e i hTrace — Trace object handle

Return: object’s reference counter new value

P7 library

P7_Trace_Register_Thread

Function register thread name using it ID, used to match later on Baical side thread ID and human
readable thread name. Call this function when new thread is created and do not forget to call
P7_Trace_Unregister_Thread when thread has to be closed.

tBOOL P7_Trace_Register_Thread(hP7_Trace i_hTrace, *i_pName, tUINT32 1i_dwThreadId)

Parameters:

e i_hTrace — Trace object handle
e i_pName — thread name
e i_dwThread_ID —ID of the thread, if i_dwThread_ID == 0 then current thread ID will be used.

Return:

e TRUE - success
e FALSE — failure

P7_Trace_Unregister_Thread
Function unregister thread, used to match later on Baical side thread ID and human readable thread
name.

tBOOL P7_Trace_uUnregister_Thread(hP7_Trace i_hTrace, tUINT32 i_dwThreadid)

Parameters:

e i_hTrace — Trace object handle
e i _dwThread ID —ID of the thread, if i dwThread ID == 0 then current thread ID will be used.

Return:

e TRUE - success
e FALSE —failure

P7_Trace_Register_Module
Function register application module. If application or library which uses P7 contains different parts
(modular architecture) you may use this function. It allows you:

e To have nice output on Baical side, in addition to module ID — module name will be printed for
every trace message

e Independent verbosity level management for every module. Module verbosity may be set
online through Baical.

Usage of this function does not have an impact on performance of traces, modules information are
transmitted only once.

hP7_Trace_Module P7_Trace_Register_Module(hP7_Trace i_hTrace,

Parameters:
e i hTrace — Trace object handle
e i _pName — module name (case sensitive), if module with the same name is already exist —

handle to that module will be returned

Return:

P7 library

e module handle

P7_Trace_Set Verbosity
Function sets trace channel verbosity level, all traces with less priority will be rejected, you may set
verbosity level on-line from Baical server.

P7_Trace_Set_Verbosity(hP7_Trace i_hTrace,
hP7_Trace_module i_hModule,

tUINT32 i_dwverbosity

Parameters:
e i_hTrace — trace object handle
e i hModule — module handle, if handle is NULL global verbosity will be set for whole P7.Trace
object

e i_dwVerbosity — verbosity level, next values are available:
o P7_TRACE_LEVEL_TRACE (0)
P7_TRACE_LEVEL_DEBUG (1)
P7_TRACE_LEVEL_INFO (2)
P7_TRACE_LEVEL_WARNING (3)
P7_TRACE_LEVEL_ERROR (4)
P7_TRACE_LEVEL_CRITICAL (5)

O O O O O

P7 Trace_Share

Function allows to share current client instance in address space of current process. Sharing mechanism
is very flexible way to redistribute your P7 trace object among your modules without passing pointer to
it and modification your interfaces, function is thread safe.

tBOOL P7_Trace_Share(hP7_Trace 1i_hTrace, *i_pName)

Parameters:

e i_hTrace —trace object handle
e i_pName —name of shared P7 client instance, should be unique

Return:

e TRUE - success
e FALSE —failure, the other object with the same name is already shared inside current process

P7 Trace Add
Function sent trace message, it has variable arguments list.

tBOOL P7_Trace_Add(ChP7_Trace 1_hTrace,
tUINT16 i_wTrace_ID,

tUINT32 i_dwLevel,
hP7_Trace_Module i_hModule,
tUINT16 i_wLine,

*i_pFile,
*i_pFunction,
*i_pFormat,

Parameters:

P7 library

i_hTrace — trace object handle

e i wTrace_ID —hardcoded trace ID, possible range is [0 .. 1023]. This ID is used to match trace
data and trace format string on server side. You can specify this parameter in range [1..1023] if
you want to send a trace as quickly as possible. Otherwise you can put 0 - and this function will
work a little bit slowly, and ID will be auto-calculated

i_elevel —trace level (error, warning, debug, etc). Described in chapter Trace verbosity levels
i_hModule — module handle, it is useful for further filtering on Baical side, may be NULL

e i _wLine - source file line number from where your trace is called (C/C++ preprocessor macro
__LINE_)

i_pFile — source file line number from where your trace is called (C/C++ preprocessor macro
__FILE_)

i_pFunction — source file name from where your trace is called. (C/C++ preprocessor macro
__FUNCTION_)

i_pFormat — format string (like "Value = %d, %08x"). Described in chapter Trace format string

e .. -variable arguments

Return:

e TRUE - success
e FALSE —failure, there are few possible reasons for failure (for details see logs):
o No free buffers to store new trace, P7 client do not have enough time to deliver all
trace/telemetry messages and there is no free buffers
o Baical server is not available (if Sink is Baical)
o No free space on HDD (if Sink is file)

N.B.: DO NOT USE VARIABLES for format string, file name, function name! You should always use
CONSTANT TEXT like "My Format %d, %s", “myfile.cpp”, “myfunction”

To simplify function call you may use macro P7_TRACE_ADD defined in <P7>/Headers/P7_Cproxy.h.

P7 Trace_Embedded
Function is similar to P7_Trace_Add(...) function, but intended for embedding into existing logging/trace
function inside your code.

tBOOL P7_Trace_Embedded(ChP7_Trace _hTrace,
tUINT16 i_wTrace_ID,
tUINT32 i_dwLevel,
hP7_Trace_Module i_hModule,
tUINT16 i

const char
const char
const **i_ppFormat

Parameters:

e i_hTrace —trace object handle

e i_wTrace_ID —hardcoded trace ID, possible range is [0 .. 1023]. This ID is used to match trace
data and trace format string on server side. You can specify this parameter in range [1..1023] if
you want to send a trace as quickly as possible. Otherwise you can put O - and this function will
work a little bit slowly, and ID will be auto-calculated

i_elevel —trace level (error, warning, debug, etc). Described in chapter Trace verbosity levels
i_hModule — module handle, it is useful for further filtering on Baical side, may be NULL
i_wLine — source file line number from where your trace is called (C/C++ preprocessor macro
__LINE_)

P7 library

e i pFile —source file line number from where your trace is called (C/C++ preprocessor macro
__FILE_)
e i pFunction —source file name from where your trace is called. (C/C++ preprocessor macro
__FUNCTION_)
e i_ppFormat —address of format string (like "Value = %d, %08x"). Described in chapter Trace
format string
Return:

e TRUE - success
e FALSE —failure, there are few possible reasons for failure (for details see logs):
o No free buffers to store new trace, P7 client do not have enough time to deliver all
trace/telemetry messages and there is no free buffers
o Baical server is not available (if Sink is Baical)
o No free space on HDD (if Sink is file)

N.B.: DO NOT USE VARIABLES for format string, file name, function name! You should always use
CONSTANT TEXT like "My Format %d, %s", "myfile.cpp”, “myfunction”

P7_Trace_Managed

Function is similar to P7_Trace_Add {(...) function, but intended for usage with managed languages like
C#, python, VB, etc. It is not so efficient like P7_Trace_Add () or P7_Trace_Embedded() functions (about
25% less efficient)

tBOOL P7_Trace_Managed(hP7_Trace 1_hTrace,
tUINT16 i_wTrace_ID,
tUINT32 i_dwLevel,
hP7_Trace_Module i_hModule,
tUINT16 i_wLine,

_pFile,
_pFunction,
*i_pMessage

Parameters:

e i_hTrace —trace object handle

e i_wTrace_ID —hardcoded trace ID, possible range is [0 .. 1023]. This ID is used to match trace
data and trace format string on server side. You can specify this parameter in range [1..1023] if
you want to send a trace as quickly as possible. Otherwise you can put 0 - and this function will
work a little bit slowly, and ID will be auto-calculated

i_eLevel —trace level (error, warning, debug, etc). Described in chapter Trace verbosity levels
i_hModule — module handle, it is useful for further filtering on Baical side, may be NULL

e i_wlLine —source file line number from where your trace is called (C/C++ preprocessor macro

__LINE_)

e i _pFile —source file line number from where your trace is called (C/C++ preprocessor macro
__FILE_)

e i pFunction —source file name from where your trace is called. (C/C++ preprocessor macro
__FUNCTION_)

e i_pMessage — trace text messsage

Return:

e TRUE - success
e FALSE —failure, there are few possible reasons for failure (for details see logs):

P7 library

o No free buffers to store new trace, P7 client do not have enough time to deliver all
trace/telemetry messages and there is no free buffers

o Baical server is not available (if Sink is Baical)

o No free space on HDD (if Sink is file)

C# interface
C# shell file is located in <P7>/ Wrappers/C#/P7.cs

C# shell depending on P7x64.dll/ P7x32.dIl you may generate them by building P7 solution

P7.Traces
Constructor allows to create P7 trace object

P7.Traces Traces(P7.Client i_pClient, String i_sName)

Parameters:

e i _pClient — client object class

e i_pName — name of the trace channel
Return:

e P7trace object in case of success
e ArgumentException(...) or ArgumentNullException(...) in case of failure

P7.Traces.Get_Shared
This functions allows you to get P7 trace instance if it was created by someone else inside current
process and shared using P7::Traces::Share(...) function.

Sharing mechanism is very flexible way to redistribute your P7 trace object among your modules
without passing pointer to it and modification your interfaces, function is thread safe.

P7.Traces Get_Shared(String i_sName)

Parameters: name of previously shared P7 trace instance

Return:

e P7trace object in case of success
e nullin case of failure

P7.Traces.Add_Ref
Function increase object reference counter

System.Int32 Addref()

Return: object’s reference counter new value

P7 library

P7.Trace.Release

Function decrease object reference counter, object will be destroyed when reference counter is equal to
0.

System.Int32 Release()

Return: object’s reference counter new value

P7.Traces.Register_Thread

Function register thread name using it ID, used to match later on Baical side thread ID and human
readable thread name. Call this function when new thread is created and do not forget to call

P7 Trace_Unregister_Thread when thread has to be closed.

Register_Thread(String i_sName, UInt32 i_dwThreadID = 0)

Parameters:

e i sName - thread name
e i_dwThread_ ID - ID of the thread, if i dwThread_ID == 0 then current thread ID will be used.
Return:

e true — success
e false —failure

P7.Traces.Unregister_Thread
Function unregister thread, used to match later on Baical side thread ID and human readable thread
name.

Unregister_Thread(UInt32 i_dwThreadib = 0)

Parameters:
e i_dwThread_ID —ID of the thread, if i_dwThread_ID == 0 then current thread ID will be used.
Return:

e TRUE - success
e FALSE — failure

P7.Traces.Register_Module
Function register application module. If application or library which uses P7 contains different parts
(modular architecture) you may use this function. It allows you:

e To have nice output on Baical side, in addition to module ID — module name will be printed for
every trace message

e Independent verbosity level management for every module. Module verbosity may be set
online through Baical.

Usage of this function does not have an impact on performance of traces, modules information are
transmitted only once.

System.IntPtr Register_Module(String i_sName)

P7 library

Parameters:

e i_pName — module name (case sensitive), if module with the same name is already exist —
handle to that module will be returned

Return:

e module handle

P7.Traces.Set_Verbosity
Function sets trace channel verbosity level, all traces with less priority will be rejected, you may set
verbosity level on-line from Baical server.

Set_Vverbosity(System.IntPtr i_hModule, Traces.Level i_eLevel)

Parameters:

e i hModule — module handle, if handle is null global verbosity will be set for whole P7.Trace
object. To obtain module handle use P7.Traces.Register _Module() function
e i_dwVerbosity — verbosity level

P7.Traces.Share

Function allows to share current client instance in address space of current process. Sharing mechanism
is very flexible way to redistribute your P7 trace object among your modules without passing pointer to
it and modification your interfaces, function is thread safe.

Share(String i_sName)

Parameters:
e i_sName — name of shared P7 client instance, should be unique
Return:

e TRUE - success
e FALSE —failure, the other object with the same name is already shared inside current process

P7.Traces.Trace
Functions sent trace/debug/warning/error/critical messages.

Trace System.IntPtr 1_hModule, String 1_sMessage
Debug (System.IntPtr i_hModule, String i_sMessage)
Info (System.IntPtr i_hModule, String i_sMessage)

warning (System.IntPtr i_hModule, String i_sMessage)

Error (System.IntPtr i_hModule, String i_sMessage)
critical (System.IntPtr i_hModule, String i_sMessage)

Parameters:

e i_hModule — module handle, it is useful for further filtering on Baical side. To obtain module
handle use P7.Traces.Register_Module() function
e i_sMessage —trace message

Return:

e TRUE - success

P7 library

e FALSE —failure, there are few possible reasons for failure (for details see logs):
o No free buffers to store new trace, P7 client do not have enough time to deliver all
trace/telemetry messages and there is no free buffers
o Baical server is not available (if Sink is Baical)
o No free space on HDD (if Sink is file)

Python interface
Python shell file is located in <P7>/ Wrappers/Py/P7.py

Python shell depending on P7x64.dll/P7x32.dIl (Windows) and libP7.so (Linux) you may generate them
by building P7 solution under Windows or run build.sh under Linux

Importing
Importing is described in Client Importing chapter.

P7. Get_Trace_Channel
Function allows to get P7 trace instance by name or create new one.

.Traces .Get_Trace_channel (- =)

Parameters:

e i sTraceName — name of P7 trace instance, should be unique, used for sharing P7 trace in
address space of current python session

e i _sClientName — name of the client, registered by function call Register Client(), may be empty
if client with i_sTraceName is already exists, otherwise i_sClientName is used to create new
trace object

Return:

e True in case of success
e None in case of failure

P7. Traces.Enable_Stack_Info

Function allows enable/disable collecting stack information (file name & line, function name). Extracting
information about stack takes a lot of time, about additional 500 microseconds on modern PC (2014). If
you disable stack information - trace functions will be accelerated about 50-150 times depending on
python version.

.Traces.Enable_Stack_Info(,)

Parameters:

e i_bEnabled — disable — False, enable - True

P7.Traces.Trace
Functions sent trace/debug/info/warning/error/critical messages.

.Traces.Trace(] ;)
.Traces.Debug(s s s)

P7 library

.Traces.Infto(
.Traces.warning(

.Traces.Error(
.Traces.Critical(

Parameters:

e i_hModule — module handle, if handle is 0 global verbosity will be set for whole P7.Trace object.
To obtain module handle use P7.Traces.Register_Module() function

e i_sMessage — trace message

e i_bUseStackinfo — enable or disable stack information, see P7.Traces.Enable Stack Info for
details

Return:

e True —success
e False —failure, there are few possible reasons for failure (for details see logs):
o No free buffers to store new trace, P7 client do not have enough time to deliver all
trace/telemetry messages and there is no free buffers
o Baical server is not available (if Sink is Baical)
o No free space on HDD (if Sink is file)

P7.Traces.Set_Verbosity
Function sets trace channel verbosity level, all traces with less priority will be rejected, you may set
verbosity level on-line from Baical server.

.Traces.Set_Verbosity()])

Parameters:

e i_hModule — module handle, if handle is null global verbosity will be set for whole P7.Trace
object. To obtain module handle use P7.Traces.Register_Module() function
e i_iLevel — verbosity level, there are next verbosity levels:
e P7.Traces.m_iTrace (0)
e P7.Traces.m_iDebug (1)
e P7.Traces.m_ilnfo (2)
P7.Traces.m_iWarning (3)
P7.Traces.m_iError (4)
P7.Traces.m_iCritical (5)

P7.Traces.Register_Module
Function register application module. If application or library which uses P7 contains different parts
(modular architecture) you may use this function. It allows you:

e To have nice output on Baical side, in addition to module ID — module name will be printed for
every trace message

e Independent verbosity level management for every module. Module verbosity may be set
online through Baical.

Usage of this function does not have an impact on performance of traces, modules information are
transmitted only once.

hModule .Traces.Register_Module(,)

P7 library

Parameters:

e i_pName — module name (case sensitive), if module with the same name is already exist —
handle to that module will be returned

Return:

e module handle (digit)

P7 library

Telemetry interface

Configuration
For fine configuration and controlling of telemetry channel special structure is defined:

¢ *thTelemetry_Enable) (*1_pContext, tUINT8 1_bId, tBOOL 1_bEnable);
tUINT64 (*fnGet_Time_stamp) (*i_pContext);
*fnConnect) (*i_pContext, tBOOL 1i_bConnected);

*pContext;
tUINT64 gwTimestamp_Frequency;
fnGet_Time_Stamp pTimestamp_cCallback;
fnTelemetry_Enable pEnable_callback;
fnConnect pConnect_cCallback;
} stTelemetry_Conf;

Parameters:

e pContext — used defined context pointer, will be used with all callbacks

e gwTimestamp_Frequency — in most of the cases telemetry channel uses hi precision system
timestamps, but if you want to use more precise time stamp please fill this field with your time
precision in Hz. This parameter has to be used only together with
function. Separate usage isn’t allowed. Put 0 to use default system timestamp.

e pTimestamp_Callback — call back to retrieve current user defined timestamp, will be called for
every telemetry sample — so function should not bring performance penalties. Put NULL to use
default system timestamp.

e pEnable_Callback — call back function to be called when state of the counter has been changed
(ON/OFF) remotely from Baical. NULL is default value

e pConnect_Callback — call back function to be called when connection state has been changed.
NULL is default value

fnTelemetry_Enable function parameters:

e i pContext — context passed to structure
e i_bld—counter’sID
e i_bEnable —counter’s state TRUE = ON, FALSE = OFF

fnGet_Time_Stamp function parameters:
e i pContext — context passed to structure

Return: timestamp value, 64 bits

fnConnect function parameters:

e i pContext — context passed to structure
e i bConnect —connection state TRUE = ON, FALSE = OFF

C++ interface
Trace header file is located in <P7>/Headers/P7_Telemetry.h

P7 library

P7 _Create_Telemetry
Function allows to create P7 telemetry object

IP7_Telemetry* P7_Create_Telemetry(IP7_Client *7_pClient,
*i_pName,

stTelemetry_conf *i_pConf =

Parameters:

e i_pClient — pointer to client object
e i_pName — name of the telemetry channel
e i_pConf —telemetry channel configuration, use NULL for default values.

Return:

e Valid pointer to IP7_Telemetry object in case of success
e NULL in case of failure

P7_Get_Shared_Telemetry
This functions allows you to get P7 telemetry instance if it was created by someone else inside current
process and shared using IP7_Telemetry::Share(...) function.

Sharing mechanism is very flexible way to redistribute your P7 telemetry object among your modules
without passing pointer to it and modification your interfaces, function is thread safe.

IP7_Telemetry* P7_Get_Shared_Telemetry(*i_pName)

Parameters: name of previously shared P7 telemetry instance
Return:

e Valid pointer to IP7_Telemetry interface in case of success
e NULL in case of failure

N.B.: Every successful call of this function increase reference counter value on retrieved IP7_Telemetry
object, do not forget to call Release() function

IP7_Telemetry::Add_Ref
Function increase object reference counter

tINT32 Add_Ref()

Return: object’s reference counter new value

IP7_Telemetry::Release
Function decrease object reference counter, object will be destroyed when reference counter is equal to

0
tINT32 Release()

Return: object’s reference counter new value

P7 library m

IP7 _Telemetry::Share

Function allows to share current P7 telemetry instance in address space of current process. Sharing
mechanism is very flexible way to redistribute your P7 telemetry object among your modules without
passing pointer to it and modification your interfaces, function is thread safe.

tBOOL Share(

Parameters: name of shared P7 telemetry instance, should be unique
Return:

e TRUE - success
e FALSE —failure, the other object with the same name is already shared inside current process

IP7_Tlemetry::Create
Function creates new telemetry counter and return counter’s ID. One channel can handle up to 256
independent counters.

tBOOL Create(
tINT64
tINT64
tINT64

tUINTS
tUINTS

Parameters:

e i pName - name of counter, max length 64 characters, should be unique for current channel
(case sensitive)

e i_lIMin — minimal counter value, helping information for visualization, later you can override it
in telemetry viewer

e i_lIMax —maximal counter value, helping information for visualization, later you can override it
in telemetry viewer

e i_llAlarm —alarm counter value, helping information for visualization

e i _bOn - parameter specifies is counter enabled (1) or disabled (0) by default, later you can

enable/disable it in real time from Baical server.
e 0_plD —output parameter, receives ID of the counter, this value is used to add samples to the
counter
Return:

e TRUE —in case of success

e FALSE —in case of failure, there are few possible reasons:
o No empty counters, all 256 slots are busy
o Not valid input parameters
o Counters name is already used

IP7_Telemetry::Add
Function allows to add counter’s sample.

tBOOL Add(tUINT8 i_bID, tINT64 i_llvalue)

Parameters:

P7 library

e i_bID—counterID
e i _lIValue —sample value
Return:

e TRUE —in case of success

e FALSE —in case of failure, there are few possible reasons:
o No network connection (if Sink=Baical)
o No free HDD space (if Sink=File)
o Not valid input parameters

IP7_Telemetry::Find
Function finds counter’s ID by its name. Search is case sensitive.

tBOOL Find(*i_pName, tUINT8 *o_pID)

Parameters:

e i pName - name of counter
e 0 _plD—output parameter, receives ID of the counter, this value is used to add samples to the
counter

Return:

e TRUE - success, counter is found
e FALSE —failure, no counter with such name

C interface
Trace header file is located in <P7>/Headers/P7_Cproxy.h

P7_Telemetry_Create
Function allows to create P7 telemetry object

P/_Telemetry P7_Telemetry_Create _hClient,
*i_pName,

stTelemetry_conf *i_pConf

Parameters:
e i_hClient — client object handle
e i_pName — name of the telemetry channel

e i_pConf—telemetry channel configuration, use NULL for default values.
Return:

e Valid handle of P7 telemetry object in case of success
e NULL in case of failure

P7_Telemetry_Get_Shared
This functions allows you to get P7 telemetry instance if it was created by someone else inside current
process and shared using P7_Telemetry_Share(...) function.

P7 library

Sharing mechanism is very flexible way to redistribute your P7 telemetry object among your modules
without passing pointer to it and modification your interfaces, function is thread safe.

tBOOL P7_Telemetry_Share(hP7_Telemetry i_hTelemetry, *i_pName)

Parameters: name of previously shared P7 telemetry instance
Return:

e Valid handle of P7 telemetry object in case of success
e NULL in case of failure

N.B.: Every successful call of this function increase reference counter value on retrieved P7 telemetry
object, do not forget to call P7_Telemetry_Release() function

P7_Telemetry_Add_Ref
Function increase object reference counter

tINT32 P7_Telemetry_Add_Ref(hP7_Telemetry i_hTelemetry)

Parameters: P7 telemetry handle

Return: object’s reference counter new value

P7_Telemetry_Release
Function decrease object reference counter, object will be destroyed when reference counter is equal to
0.

tINT32 P7_Telemetry_Release(hP7_Telemetry i_hTelemetry)

Parameters: P7 telemetry handle

Return: object’s reference counter new value

P7_Telemetry_Share

Function allows to share current P7 telemetry instance in address space of current process. Sharing
mechanism is very flexible way to redistribute your P7 telemetry object among your modules without
passing pointer to it and modification your interfaces, function is thread safe.

tBOOL P7_Telemetry_Share(hP7_Telemetry i_hTelemetry,

Parameters:

e i_hTelemetry — P7 telemetry object handle
e i_pName - name of shared P7 telemetry instance, should be unique

Return:

e TRUE - success
e FALSE —failure, the other object with the same name is already shared inside current process

P7 library

P7_Tlemetry_Create_Counter
Function create new telemetry counter and return counter’s ID, one channel can handle up to 256
independent counters.

tBOOL P7_Telemetry_Create_Counter(hP7_Telemetry i_hTelemetry,
*i_pName,
tINT64 i_l1Min,
tINT64 i_lTmax,

tINT64 i_l1TAlarm,
tUINTS i_bon,
tUINTS8 *o_pCounter_ID

Parameters:

i_hTelemetry — P7 telemetry object handle
e i pName - name of counter, max length 64 characters, should be unique for current channel
(case sensitive)

e i_lIMin — minimal counter value, helping information for visualization, later you can override it
in telemetry viewer

e i_lIMax —maximal counter value, helping information for visualization, later you can override it
in telemetry viewer

e i_llAlarm —alarm counter value, helping information for visualization

e i_bOn - parameter specifies is counter enabled (1) or disabled (0) by default, later you can

enable/disable it in real time from Baical server.
e 0 _plD—output parameter, receives ID of the counter, this value is used to add samples to the
counter

Return:

e TRUE —in case of success

e FALSE —in case of failure, there are few possible reasons:
o No empty counters, all 256 slots are busy
o Not valid input parameters
o Counters name is already used

P7_Telemetry_Put_Value
Function allows to add counter’s sample.

tBOOL P/_Telemetry_Put_value(hP7_Telemetry 1_hTelemetry,
tUINTS i_bCounter_1ID,

tINT64 i_llvalue

Parameters:
e i hTelemetry — P7 telemetry object handle
e i_bID—counterID
e i _lIValue —sample value

Return:

e TRUE —in case of success

e FALSE —in case of failure, there are few possible reasons:
o No network connection (if Sink=Baical)
o No free HDD space (if Sink=File)
o Not valid input parameters

P7 library m

P7_Telemetry_Find_Counter
Function finds counter’s ID by its name. Search is case sensitive.

tBOOL P7_Telemetry_Find_Counter(hP7_Telemetry 1_hTelemetry,
*i_pName,

TUINTS *o_pCounter_ID

Parameters:

e i_hTelemetry — P7 telemetry object handle

e i_pName - name of counter
e 0 _plD—output parameter, receives ID of the counter, this value is used to add samples to the
counter
Return:

e TRUE - success, counter is found
e FALSE —failure, no counter with such name

C# interface
C# shell file is located in <P7>/ Wrappers/C#/P7.cs

C# shell depending on P7x64.dll/ P7x32.dIl you may generate them by building P7 solution

P7.Telemetry
Constructor allows to create P7 telemetry object

P7.Telemetry Telemetry(P7.Client i_pClient, String i_sName)

Parameters:

e i_pClient —client object class

e i_pName —name of the trace channel
Return:

e P7trace object in case of success
e ArgumentException(...) or ArgumentNullException(...) in case of failure

P7.Telemetry.Get_Shared
This functions allows you to get P7 telemetry instance if it was created by someone else inside current
process and shared using P7::Telemetry::Share(...) function.

Sharing mechanism is very flexible way to redistribute your P7 telemetry object among your modules
without passing pointer to it and modification your interfaces, function is thread safe.

P7.Telemetry Get_Shared(String i_sName)

Parameters: name of previously shared P7 telemetry instance
Return:

e P7trace object in case of success
e nullin case of failure

P7 library

P7.Telemetry.Add_Ref
Function increase object reference counter

System.Int32 Addref()

Return: object’s reference counter new value

P7.Telemetry.Release
Function decrease object reference counter, object will be destroyed when reference counter is equal to

System.Int32 Release()

F)

Return: object’s reference counter new value

P7.Telemetry.Share

Function allows to share current client instance in address space of current process. Sharing mechanism
is very flexible way to redistribute your P7 telemetry object among your modules without passing
pointer to it and modification your interfaces, function is thread safe.

Share(String i_sName)

Parameters:
e i_sName — name of shared P7 client instance, should be unique
Return:

e TRUE - success
e FALSE —failure, the other object with the same name is already shared inside current process

P7.Tlemetry.Create
Function creates new telemetry counter and return counter’s ID. One channel can handle up to 256
independent counters.

Create(String
System.Int64
System.Int64
System.Int64

System.Byte]
System.Byte o_rcounter_ID

Parameters:

e i_sName - name of counter, max length 64 characters, should be unique for current channel
(case sensitive)

e i_lIMin — minimal counter value, helping information for visualization, later you can override it
in telemetry viewer
e i_lIMax — maximal counter value, helping information for visualization, later you can override it

in telemetry viewer
e i _llAlarm —alarm counter value, helping information for visualization

P7 library m

e i_bOn — parameter specifies is counter enabled (1) or disabled (0) by default, later you can
enable/disable it in real time from Baical server.

e 0o _rCounter_ID — output parameter, receives ID of the counter, this value is used to add samples
to the counter

Return:

e TRUE —in case of success

e FALSE —in case of failure, there are few possible reasons:
o No empty counters, all 256 slots are busy
o Not valid input parameters
o Counters name is already used

P7.Telemetry.Add
Function allows to add counter’s sample.

Add(System.Byte i_bCounter_ID, System.Int64 i_llvalue)

Parameters:

e i_blD—counterID
e i_llValue —sample value
Return:

e TRUE —in case of success

e FALSE —in case of failure, there are few possible reasons:
o No network connection (if Sink=Baical)
o No free HDD space (if Sink=File)
o Not valid input parameters

P7.Telemetry.Find_Counter
Function finds counter’s ID by its name. Search is case sensitive.

Find_Counter(String i_sName, System.Byte o_rCounter_ID)

Parameters:

e i_sName - name of counter
e o_rCounter_ID — output parameter, receives ID of the counter, this value is used to add samples
to the counter

Return:

e TRUE - success, counter is found
e FALSE — failure, no counter with such name

Python interface
Python shell file is located in <P7>/ Wrappers/Py/P7.py

Python shell depending on P7x64.d1l/P7x32.dIl (Windows) and libP7.so (Linux) you may generate them
by building P7 solution under Windows or run build.sh under Linux

P7 library

Importing
Importing is described in Client Importing chapter.

P7. Get_Telemetry_Channel
Function allows to get P7 telemetry instance by name or create new one.

.Telemetry .Get_Telemetry_channel(

Parameters:

e i sTelemetryName —name of P7 telemetry object, should be unique, used for sharing P7
telemetry object in address space of current python session

e i_sClientName — name of the client, registered by function call Register_Client(), may be empty
if client with i_sTraceName is already exists, otherwise i_sClientName is used to create new
trace object

Return:

e True in case of success
e None in case of failure

P7. Telemetry.Create
Function creates new telemetry counter and return counter’s ID. One channel can handle up to 256
independent counters.

byte .Telemetry.Create(

Parameters:

e i_sName - name of counter, max length 64 characters, should be unique for current channel
(case sensitive)

e i_lIMin — minimal counter value (signed 64 bits), helping information for visualization, later you
can override it in telemetry viewer

¢ i_lIMax —maximal counter value (signed 64 bits), helping information for visualization, later you
can override it in telemetry viewer

e i_llAlarm — alarm counter value (signed 64 bits), helping information for visualization

e i _bOn - parameter specifies is counter enabled (1) or disabled (0) by default, later you can

enable/disable it in real time from Baical server.

Return:

e [0..256] —in case of success

e [-1] —in case of failure, there are few possible reasons:
o No empty counters, all 256 slots are busy
o Not valid input parameters
o Counters name is already used

P7.Telemetry.Add
Function allows to add counter’s sample.

bool .Telemetry.Add(, ,)

Parameters:

e i_blD—counterID
e i_llValue —sample value

Return:
e TRUE —in case of success

e FALSE —in case of failure, there are few possible reasons:

o No network connection (if Sink=Baical)
o No free HDD space (if Sink=File)
o Not valid input parameters

P7.Telemetry.Find_Counter
Function finds counter’s ID by its name. Search is case sensitive.

byte .Telemetry.Find_Counter(,)
Parameters:
e i_sName - name of counter
Return:

e [0..255] — success, counter is found
e [-1] —failure, no counter with such name

P7 library m

P7 library m

P7 instances redistributing

It is always difficult to integrate new library into your project especially if library functionality have to be
called from many different projects parts. You have to update your internal interfaces to pass pointers,
handles, classes or create new abstraction layer or even worse — create singleton.

P7 has mechanism (thread safe) to simplify integration process and gives you ability just use it without
internal interfaces modification — sharing mechanism.

It pretty simple to use it, for example you have some place in your project where you are going to
initialize P7 trace/telemetry instances:

IP7_Client 1_hClient P7_Create_Client(T™M("/P7.Sink=Baical /P7.Addr=127.0.0.1"));
IP7_Trace T1_hTrace P7_Create_Trace(1_hClient, ("Tracechannel”));

1_hTrace->Share(TM("MySharedTrace"));

And then from any place or your project you can do:

IP7_Trace 1_hTrace = P7_Get_Shared_Trace(l_hcClient, ("MysharedTrace”));

(1_hTrace)

1_hTrace-> (o, ("Information message #%d”), 0);

1_hTrace->Release();

You may use sharing mechanism for P7 client, P7 telemetry or trace channels.

P7 library

Process crush handling

Sometimes your application is killed by exception which you can’t handle (like access violation or
segmentation fault for example) and if you are using P7 intensively — last part of the trace or telemetry
data may be lost due to internal buffering mechanism.

Sometimes it is good to know what the last trace message from dying process was. To handle such
situation you have to:

1. Intercept process crush. How to catch moment of your application/process crash you could read
in those articles:
e Windows:
o http://www.codeproject.com/Articles/207464/Exception-Handling-in-Visual-Cplusplus
e Linux:
o http://ru.scribd.com/doc/3726406/Crash-N-Burn-Writing-Linux-application-fault-handlers
o http://www.linuxprogrammingblog.com/all-about-linux-signals?page=show
2. From crush handler function you should call once next function: P7_Exceptional Flush, (there
are analogs of that function for C, C# and Python languages). This function will deliver the rest of
the data staying in internal buffers.

http://www.codeproject.com/Articles/207464/Exception-Handling-in-Visual-Cplusplus
http://ru.scribd.com/doc/3726406/Crash-N-Burn-Writing-Linux-application-fault-handlers
http://www.linuxprogrammingblog.com/all-about-linux-signals?page=show

P7 library

Compilation
Library has not external dependencies this is why compilation is very simple:

e Windows - open P7.sIn in Visual Studio 2010 or newer, choose debug/release, x86/x64 and
rebuild the solution, all binaries will be gathered into <P7 folder>/Binaries

e Linux —run build.sh shell script to build all binaries, or run ./build.sh /clean to clean temporary
files. All binaries will be gathered into <P7 folder>/Binaries

Generated binaries:

e P7 static library (P7xXX.lib/libP7.a)

e P7 dynamic library (P7xXX.dll/libP7.s0)
e Examples applications

e Tests applications

P7 library

Shared library (dll, so) export functions
P7 shared library (P7x32.dll, P7x64.dll, libP7.s0) exports functions are described in C interface:

e C(Client interface
e Trace interface
e Telemetry interface

In addition inside <P7>/Headers/P7_Cproxy.h header file, function types definitions are described for
every exported C function, for example:

hP7_Client P7_Client_Create(*i_pArgs);

hP7_cClient (*fnP7_Client_Create) (*i_pArgs) ;

How to load & use dynamic (shared) libraries is described in next articles (with examples):

e http://msdn.microsoft.com/en-us/library/windows/desktop/ms686944(v=vs.85).aspx
e http://linux.die.net/man/3/dlopen

http://msdn.microsoft.com/en-us/library/windows/desktop/ms686944(v=vs.85).aspx
http://linux.die.net/man/3/dlopen

P7 library

Examples
There are few examples available on different languages, they are located in <P7 folder>/ Examples.

Examples are available for next languages:

e C

o C++

o C#

e Python

Examples are pretty simple and they show how:

e create & initialize P7 client

e create & initialize trace and telemetry channels
e send trace messages & telemetry samples

e release library resources

	Introduction
	Directory structure
	Components overview
	Trace
	Telemetry
	Speed tests
	Initialization parameters
	P7 library interfaces
	Client interface
	C++ interface
	P7_Create_Client
	P7_Get_Shared
	P7_Exceptional_Flush
	IP7_Client::Add_Ref
	IP7_Client::Release
	IP7_Client::Share

	C interface
	P7_Client_Create
	P7_Client_Get_Shared
	P7_Exceptional_Flush
	P7_Client_Add_Ref
	P7_Client_Release
	P7_Client_Share

	C# interface
	P7.Client
	P7.Get_Shared
	P7.Exceptional_Flush_Buffers
	P7.Client.Add_Ref
	P7.Client.Release
	P7.Client.Share

	Python interface
	Importing
	P7.Register_Client

	Trace interface
	Trace verbosity levels
	Trace format string
	C++ interface
	P7_Create_Trace
	P7_Get_Shared_Trace
	IP7_Trace::Add_Ref
	IP7_Trace::Release
	IP7_Trace::Register_Thread
	IP7_Trace::Unregister_Thread
	IP7_Trace::Register_Module
	IP7_Trace::Set_Verbosity
	IP7_Trace::Share
	IP7_Trace::Trace
	IP7_Trace::Trace_Embedded
	IP7_Trace::Trace_Managed

	C interface
	P7_Trace_Create
	P7_Trace_Get_Shared
	P7_Trace_Add_Ref
	P7_Trace_Release
	P7_Trace_Register_Thread
	P7_Trace_Unregister_Thread
	P7_Trace_Register_Module
	P7_Trace_Set_Verbosity
	P7_Trace_Share
	P7_Trace_Add
	P7_Trace_Embedded
	P7_Trace_Managed

	C# interface
	P7.Traces
	P7.Traces.Get_Shared
	P7.Traces.Add_Ref
	P7.Trace.Release
	P7.Traces.Register_Thread
	P7.Traces.Unregister_Thread
	P7.Traces.Register_Module
	P7.Traces.Set_Verbosity
	P7.Traces.Share
	P7.Traces.Trace

	Python interface
	Importing
	P7. Get_Trace_Channel
	P7. Traces.Enable_Stack_Info
	P7.Traces.Trace
	P7.Traces.Set_Verbosity
	P7.Traces.Register_Module

	Telemetry interface
	Configuration
	C++ interface
	P7_Create_Telemetry
	P7_Get_Shared_Telemetry
	IP7_Telemetry::Add_Ref
	IP7_Telemetry::Release
	IP7_Telemetry::Share
	IP7_Tlemetry::Create
	IP7_Telemetry::Add
	IP7_Telemetry::Find

	C interface
	P7_Telemetry_Create
	P7_Telemetry_Get_Shared
	P7_Telemetry_Add_Ref
	P7_Telemetry_Release
	P7_Telemetry_Share
	P7_Tlemetry_Create_Counter
	P7_Telemetry_Put_Value
	P7_Telemetry_Find_Counter

	C# interface
	P7.Telemetry
	P7.Telemetry.Get_Shared
	P7.Telemetry.Add_Ref
	P7.Telemetry.Release
	P7.Telemetry.Share
	P7.Tlemetry.Create
	P7.Telemetry.Add
	P7.Telemetry.Find_Counter

	Python interface
	Importing
	P7. Get_Telemetry_Channel
	P7. Telemetry.Create
	P7.Telemetry.Add
	P7.Telemetry.Find_Counter

	P7 instances redistributing
	Process crush handling
	Compilation
	Shared library (dll, so) export functions
	Examples

