

1 μP7 library

μP7 library integrator manual

2 μP7 library

Contents
Introduction .. 3

Directory structure .. 4

Design overview .. 5

Memory consumption ... 6

Integration guideline ... 7

Create μP7 platform header ... 7

Integrating μP7 into user firmware project .. 7

Compiling μP7 preprocessor ... 8

Using μP7 preprocessor .. 8

Integrate μP7 proxy library ... 10

P7 arguments .. 11

Trace format string specification .. 15

Limitations ... 19

3 μP7 library

Introduction

μP7 (micro P7) is lightweight C library for sending trace/logs & telemetry data from your Micro-
controller’s firmware to host/HW FIFO/cycle buffer/network/etc. for further analysis.

It is designed to be integrated on almost every microcontroller, even with very limited resources.

The library is oriented on firmware developers (Bare-metal or RTOS) & real-time task.

 If you are looking for logging library for Linux/Windows we consider you to have a look to P7 library.

Basic facts:

 extremely low memory usage, (900 lines of code, no dynamic memory allocation, all traces/logs
format strings are removed from compilation & binaries)

 speed is priority, library is designed to minimize time per trace/telemetry call, for example
average performance for Intel i7-870 is:

o 15 million traces per second
o 23 million telemetry samples per second

 Unicode support (UTF-8, UTF-16, UTF-32)

 no external dependencies

 no heap memory or any dynamic memory allocation

 remote management from Baical server (set verbosity per module, enable/disable telemetry
counters) is possible

 big/little endian support

 providing maximum information for every trace message:
o trace/log message (format string + Variable arguments)
o Function name, file name, file line number
o Module ID & name (if it was registered)
o Level (error, warning, .. etc.)
o Time with max platform accuracy
o Trace ID
o Sequence Number
o Current thread ID (if RTOS is used)

 pre-processor is used to limit memory & .data segment usage

4 μP7 library

Directory structure

 Documentation (folder with library documentation)

 P7Lib (P7 library, it is used by proxy to send data to Baical server/file. External P7 library may
be used)

 uP7Example (uP7 & uP7Proxy integration example)

 uP7Lib (uP7 library core)
o Headers (uP7 API headers)
o Platforms (uP7 platform headers)
o Source (uP7 core)

 uP7preProcessor (uP7 preprocessor, tool to pre-process user’s source files)

 uP7ProxyLib (uP7 proxy library, it is in charge of receiving uP7 packets and transform them to P7
protocol)

 uP7Test (uP7 tests, C++11 required)

 CMakeLists.txt – CMake (>= v3.8) script file

5 μP7 library

Design overview

μP7 consist of next components/tools:

 μP7 library (integrated into user firmware)

 μP7 proxy library (integrated into user host application, if any)
o handles all μP7 incoming & outgoing data
o decode it (using session files, generated by preprocessor)
o transform it to appropriate shape for final user (sending to Baical server or syslog,

saving to files)

 μP7 pre-processor
o pre-process user C/C++ files, making them compatible with μP7 library
o generate session files, to be used later by μP7 proxy library. Session files contain all

necessary information to decode μP7 traffic.

μP7 is lightweight library and designed to be integrated on almost every microcontroller, even with very
limited resources.

Single instance of μP7proxy library can handle up to 256 independent processors.

 μP7 is capable to work without host. It is possible to save μP7 output to any HW FIFO/cycle buffer
and read it later when user will be interested in logs/telemetry.

 It is responsibility of integrator to provide transport between CPU & Hosts! μP7 library has no access
to network or any platform specific HW like FIFO/RS-232/etc.!

6 μP7 library

Memory consumption

Memory consumption can be divided into 3 parts:

1. Internal memory for μP7. The size is always the same – 408 bytes of .data
2. .data segment memory consumption

a. μP7 instance – 264 bytes
b. One module description – 10 bytes + size of module name (string)
c. One telemetry description – 8 bytes + size of tel. counter name (string)
d. One trace item description – 4 bytes + 2bytes*(variable arguments count)

 Important notice: μP7 is not using heap memory

Let’s make memory consumption simulation using next piece of code:

 uP7initialize call consumes
o 264 bytes in .data segment

 uP7TrcRegisterModule ("ModuleA") consumes
o 10 bytes + 8 bytes of string (7 chars+0): 18 bytes in .data segment

 uP7TrcRegisterModule ("ModB") consumes
o 10 bytes + 5 bytes of string (4 chars+0): 15 bytes in .data segment

 uP7TelCreateCounter consumes
o 8 bytes + 8 bytes of string (7 chars+0): 16 bytes in .data segment

 uP7TRC (2 var. arguments)
o 4 bytes + 2 * 2: 8 bytes in .data segment

 uP7TRC (3 var. arguments)
o 4 bytes + 2 * 3: 10 bytes in .data segment

 uP7TelSentSample – 0 consumption.

In total: 331 bytes in .data memory segment

struct stuP7config l_stConfig;

//config initialization

//...

uP7initialize(&l_stConfig);

huP7Module l_hModule1 = NULL;

huP7Module l_hModule2 = NULL;

huP7TelId l_hCounter = uP7_TELEMETRY_INVALID_ID;

uP7TrcRegisterModule("ModuleA", euP7Level_Trace, &l_hModule1);

uP7TrcRegisterModule("ModuleB", euP7Level_Trace, &l_hModule2);

uP7TelCreateCounter("Counter", 0, 0, 1, 1, true, &l_hCounter1);

for (int i = 0; i < 100; i++)

{

 uP7TRC(0, l_hModule1, "Test message with 2 parameters %d, %d", 10, i);

 uP7TRC(0, l_hModule2, "Test message with 3 parameters %d, %d %s", 10, i, "some

text");

 uP7TelSentSample(l_hCounter, 0.0);

 uP7TelSentSample(l_hCounter, 1.0);

}

7 μP7 library

Integration guideline

Integration and first use of μP7 may be splitted into several steps:

1. Create μP7 platform header file and providing it to μP7 during compilation
2. Integrating μP7 into user firmware project
3. Compiling μP7 preprocessor
4. Using μP7 preprocessor (and user firmware source code as input) generate session

(YYYYMMDD_HHMMSS.up7) & description (uP7preprocessed.h) files
5. Compile μP7 library using platform header
6. Compile user firmware using description (uP7preprocessed.h) file & μP7 library
7. Integrate μP7 proxy library into user application

Create μP7 platform header

Platform headers are located in folder <uP7>/uP7Lib/Platforms

Platform header is a way to describe your target microcontroller specifics and provide this description to
μP7 library.

As example please have a look at <uP7>/uP7Lib/Platforms/x86/uP7platform.h

 Example file contains exhaustive comments and it should be really easy to make your own platform
header based on this example.

All you need is:

1. Create new subfolder for your platform inside <uP7>/uP7Lib/Platforms/
2. Put into this new subfolder uP7platform.h & CMakeLists.txt files (take as example x86 platform)
3. Modify <uP7>/uP7Lib/Platforms/CMakeLists.txt to include your new platform header into

compilation

Integrating μP7 into user firmware project

μP7 library provides flexible way of integration into almost every CPU & OS.

To achieve this library do not use heap, locks, timers … or any other platform/run-time specific
primitives, all necessary functionality should be provided by integrator through callbacks and platform
header (describer in prev. chapter).

Entry point to μP7 library functionality is API header <uP7>/uP7Lib/Headers/uP7.h

And first what integrator should do is create μP7 instance using function

Function will instantiate μP7 as singleton and make library functions visible for entire firmware project.

To initialize μP7 integrator should create & fill structure

/**

 * \brief P7 initialization function, should be called once at CPU startup

 * @param i_pConfig [in] configuration

 * @return true - uP7 has been initialized, false - failure

*/

bool uP7initialize(const struct stuP7config *i_pConfig);

8 μP7 library

It consist of mandatory members and optional.

Mandatory:

 Provided by integrator:
o bCpuId – ID of the processor, up to integrator to decide which ID to use
o cbTimerFrequency, cbTimerValue – callback to provide to μP7 information about hi-

resolution timer to timestamp trace/telemetry/log items.
o cbSendPacket – callback will be used by μP7 every time when some data have to be sent

to host/HW FIFO.

 Generated by μP7 preprocessor and located in uP7preprocessed.h
o uSessionId (uP7preprocessed.h : g_uSessionId)
o pModules, szModules (uP7preprocessed.h : g_szModules, g_pModules)
o pTraces, szTraces (uP7preprocessed.h : g_szTraces, g_pTraces)
o pTelemetry, szTelemetry (uP7preprocessed.h : g_szTelemetry, g_pTelemetry)

When μP7 will be instantiated – every other function from API list can be called.

 Project example is located at: <uP7>/uP7Example

Compiling μP7 preprocessor

μP7 pre-processor compilation is based on CMake, please refer to Cmake documentation to get build
and installing instructions.

There is no specific compiler requirements, the project can be build using even C++ compilers without
C++11/14/17/etc. support.

Using μP7 preprocessor

μP7 pre-processor is important part of the project and has to be used every time when firmware micro
code has been changed.

The main purposes of μP7 pre-processor are:

 Preprocess user firmware source files to extract information about

/*! uP7 configuration structure */

struct stuP7config

{

 /**< Session ID*/

 uint32_t uSessionId;

 /**< CPU id */

 uint8_t bCpuId;

 /**< Context for timer functions */

 void *pCtxTimer;

 /**< callback to get system high-resolution timer frequency */

 fnuP7getTimerFrequency cbTimerFrequency;

 /**< callback to get system high-resolution timer value */

 fnuP7getTimerValue cbTimerValue;

 /**< ...

 For full list of members please have a look to <uP7>/uP7Lib/Headers/uP7.h

 */

};

9 μP7 library

o μP7 trace format string and variable arguments
o μP7 modules names
o μP7 telemetry counters

 This text information will be used to generate 2 files
o session (YYYYMMDD_HHMMSS.up7) – the file later will be used by μP7 proxy for

decoding μP7 incoming traffic
o description (uP7preprocessed.h) – will be compiled with firmware micro code providing

static information about all trace/log/telemetry calls.

 It allows to
o Substantially reduce memory footprint
o Significantly increase performance – no need at run-time analyze format string, allocate

memory, making decisions which already have been made by μP7 pre-processor
o Fundamentally reduce data traffic – only important information is transmitted, no

format strings, file names, file lines, module names, telemetry counter names, etc.
o Apply additional security – without session file it won’t be possible to decode μP7

traffic.

Usage of μP7 pre-processor is simple:

>uP7preProcessor <config.xml> <sources files dir> <output dir>
Where

 Config.xml - μP7 pre-processor configuration file, example of such file can be found at
<uP7>/uP7Example/uP7preProcessor/uP7Preprocessor.xml

 Source file dir – directory where firmware microcode files are located

 Output dir – output directory, where session & description files will be saved

 Internal parameters of XML file are described in
<uP7>/uP7Example/uP7preProcessor/uP7Preprocessor.xml

Preprocessor config file (xml) consist of few sections

 Options
o Project – contains most important for user parameters!
o Process – list of files masks to be taken in account by preprocessor
o Functions – list of the function names which preprocessor will look for inside source

code tree.
o Descriptors - allows to register trace modules and telemetry counter in preprocessor

XML instead of source code
o ReadOnlyFiles – list of files to be handled by preprocessor as read-only
o ExcludedFiles – list of the files to be excluded from preprocessing

 Files – storing list of scanned files and HASH values, not intended to be edited by user.

 μP7 pre-processor should be launched every time when firmware source files are changed to
regenerate session & description files.

 Firmware files can be modified by μP7 pre-processing stage, it is recommended to commit such
modifications.

 μP7 processor generates few output files, it is recommended to commit (Git, Svn, etc.) files 2&3 with
all others source files of the firmware:

1. <xxxx>.up7
2. uP7IDs.h (optional)

10 μP7 library

3. uP7preprocessed.h

Integrate μP7 proxy library

μP7 proxy library can be integrated in any C++ application, there is no external dependencies, even old
C++ compilers can be used.

The main goal for μP7 proxy library is to receive μP7 data from micro-controllers and convert it to
appropriate user shape.

1. First of all integrator should link μP7 proxy library with application.
2. Then using API header (<uP7>/uP7ProxyLib/Headers/uP7proxyApi.h) call function

3. Function will create μP7 proxy object, and using it integrator should register CPU

 Please refer to P7 arguments chapter for details.

/**

 * \brief Create instance of uP7 proxy object.

 * @param i_pP7Args [in] P7 arguments, see P7 documentation for details. May

be NULL

 * @param i_puP7Dir [in] directory where uP7 description files are located,

previously created by uP7preProcessor tool

 * @return new reference counter value

*/

extern "C" P7_EXPORT IuP7proxy* __cdecl uP7createProxy(const tXCHAR *i_pP7Args,

 const tXCHAR *i_puP7Dir

);

11 μP7 library

4. Result of the function call will be μP7 FIFO object, and this object should be used to receive &
send data from/to μP7 proxy object.

 Example can be found in <uP7>/uP7Example folder

P7 arguments

Initialization parameters is a string like: “/P7.Sink=Baical /P7.Addr=127.0.0.1 /P7.Pool=4096”

Initialization parameters are used by every instance of P7 client - when you are going to create your P7
client instance you have to specify parameters for it or pass empty/NULL string to use default values.

You may pass hardcoded parameters directly to the client like that:

Or you may pass parameters through command line (if you are using both modes – console parameters
have priority over hardcoded parameters):

/**

 * \brief Register new CPU and connect it to P7

 * @param i_bCpuId [in] CPU ID

 * @param i_bBigEndian [in] Big-endian CPU flag

 * @param i_qwFreq [in] target CPU clock frequency in Hz. This clock is used

for trace & telemetry timestamp

 * @param i_pName [in] channel name, will be used to display in Baical server

 * @param i_szFifoLen [in] FIFOs size in bytes (IuP7stream *&o_iStream). Min

value 16384 bytes.

 * @param i_bFifoBiDirectional [in] flag to specify that communication with

CPU is bidirectional and proxy can use

 * it to send control data to CPU like disable telemetry counter, change

verbosity, etc.

 * If fifo is bidirections - set to "true", otherwise - "false"

 * @param o_iFifo [out] FIFO object to be used for CPU communication.

 * N.B.: Please do not forget to call o_iFifo->Release() right

after UnRegisterCpu();

 * @return true - success, false - error

*/

virtual bool RegisterCpu(uint8_t i_bCpuId,

 bool i_bBigEndian,

 uint64_t i_qwFreq,

 const tXCHAR *i_pName,

 size_t i_szFifoLen,

 bool i_bFifoBiDirectional,

 IuP7Fifo *&o_iFifo

);

IuP7proxy *iProxy = uP7createProxy(TM("/P7.Verb=0 /P7.Sink=Baical

/P7.Pool=1024"), TM("."));

iProxy->RegisterCpu(1, false, CpuTimerFrequency(), TM("CPU1"), 0xFFFF, true,

pFifo);

>> MyApplication.exe /P7.Sink=Baical /P7.Addr=localhost

12 μP7 library

Next parameters are common for all possible sink:

 “/P7.Sink” - Select data flow direction, there are few values:
o “Baical” – deliver to Baical server over network
o “FileBin” – into a binary file, please use Baical to open it
o “FileTxt” – into a text file (Windows: UTF-16, Linux: UTF-8)
o “Console” – into console
o “Syslog” – into syslog
o “Auto” – deliver to Baical if connection is established, otherwise to file (connection

timeout is 250 ms)
o “Null” - all data will be dropped

Default value is “Baical”. Example: “/P7.Sink=Auto”

 “/P7.Name” – P7 client instance name, max length is about 96 characters, by default name of
host process is used (preferred mode). For script languages where host process is script
interpreter you may use this option. Example: “/P7.Name=MyChannel”

 “/P7.On” – option allows enable/disable P7 client, by default P7 is on (1). Example “/P7.On=0”

 “/P7.Verb” – P7 library has internal logging mechanism(OFF by default), using this option you
can set logging verbosity and automatically enable logging, next values are available:

o “0” – info
o “1” – debug
o “2” – warning
o “3” – error
o “4” – critical

For example “/P7.Verb=0”. For Linux all P7 internal logs will be redirected to console stdout, for
Windows folder “P7.Logs” will be created in host process folder and all further logs will be
stored there.

 “/P7.Pool” – set maximum memory size available for internal buffers in kilobytes. Minimal
16(kb), maximal is limited by your OS and HW, default value is 4096 (4mb). Example if 1Mb
allocation: “/P7.Pool=1024”

 “/P7.Help” – print console help

Next parameters are applicable for “/P7.Sink=Baical” or “/P7.Sink=Auto”:

 “/P7.Addr” – set Baical server network address (IPV4, IPV6, NetBios name). Example:
“/P7.Addr=::1”, “/P7.Addr=127.0.0.1”, “/P7.Addr=MyPC”

 “/P7.Port” – set Baical server listening UDP port (default is 9010), example: “/P7.Port=9010”

 “/P7.PSize” – set transport packet size. Min value is 512 bytes, Max - 65535, Default – 512.
Example: “/P7.PSize=1472” . Bigger packet allows transmit data with less overhead, but if you
specify packet larger than your network MTU – there is a risk of transmission losses. P7 network
protocol handles packets damaging and loss and retransmit necessary data chunks, but if packet
is bigger than MTU – P7 can’t correctly process such situation for now.

 “/P7.Window” – size of the transmission window in packets, used to optimize transmission
speed, usually it is not necessary to modify this parameter. Min value – 1, max value – ((pool
size / packet size) / 2).

 “/P7.Eto” –transmission timeout (in seconds) when P7 object has to be closed. Usage scenario:
o Application sending data to Baical server through P7
o For some reasons connection with Baical has been lost
o Some data are still inside P7 buffers and P7 tries to deliver it
o Application is closed by user and “/P7.Eto” value is used to specify time in second during

which P7 will attempts to deliver data reminder.

Next parameters are applicable for “/P7.Sink=FileTxt” or “/P7.Sink=Console” or “/P7.Sink=Syslog”:

 “/P7.Format” – set log item format for text sink, consists of next sub-elements

13 μP7 library

o “%cn” – channel name
o “%id” – message ID
o “%ix” – message index
o “%tf” – full time: YY.MM.DD HH.MM.SS.mils.mics.nans
o “%tm” – medium time: HH.MM.SS.mils.mics.nans
o “%ts” – time short MM.SS.mils.mics.nans
o “%td” – time difference between current and prev. one +SS.mils.mics.nans
o “%tc” – time stamp in 100 nanoseconds intervals
o “%lv” – log level
o “%ti” – thread ID
o “%tn” – thread name (if it was registered)
o “%cc” – CPU core index
o “%mi” – module ID
o “%mn” – module name
o “%ff” – file name + path
o “%fs” – file name
o “%fl” – file line
o “%fn” – function name
o “%ms” – text user message

Example: “/P7.Format=\"{%cn} [%tf] %lv %ms\"”

 “/P7.Facility” – set Syslog facility, for details: https://tools.ietf.org/html/rfc3164#page-8

Next parameters are applicable for “/P7.Sink=File” or “/P7.Sink=Auto”:

 “/P7.Dir” – option allows to specify directory where P7 files will be created, if it is not specified
process directory will be used, examples: “/P7.Dir=/home/user/logs/”, “/P7.Dir=C:\Logs\”

 “/P7.Roll” – use option to specify files rolling value & type. There are 3 rolling types:
o Rolling by file size, measured in megabytes (“mb” command postfix). Example:

 /P7.Roll=100mb”
o Rolling by logging duration, measured in hours, 1000 hours max (“hr” command postfix).

Examples:
 “/P7.Roll=24hr”
 “/P7.Roll=1hr”

o Rolling by exact time measured in hours and minutes (“tm” command postfix), user can
specify one or few rolling times. Examples:

 “/P7.Roll=10:30tm”
 “/P7.Roll=12:00,00:00tm”
 “/P7.Roll=00:00,06:00,12:00,18:00tm”

 “/P7.Files” – option defines maximum P7 logs files in destination folder, in case if count of files
is larger than specified value - oldest files will be removed. Default value is 0(OFF), max value –
4096. Example: “/P7.Files=4096”

 “/P7.FSize” – option defines maximum P7 logs files cumulative size in MB in destination folder
“/P7.Dir” in case if total size of files is larger than specified value - oldest files will be removed.
Default value is 0(OFF), max value – 4294967296. This option working only with “/P7.Roll”
option. Example: “/P7.FSize=256”

Next parameters are applicable for all trace channels:

 “/P7.Trc.Verb” – verbosity level for all trace channels and associated modules, has next values:
o “0” – trace
o “1” – debug
o “2” – info

https://tools.ietf.org/html/rfc3164#page-8

14 μP7 library

o “3” – warning
o “4” – error
o “5” – critical

Example: “/P7.Trc.Verb=4”

15 μP7 library

Trace format string specification

μP7 library is capable to send trace/logs messages to host using macros:

 uP7TRC

 uP7DBG

 uP7INF

 uP7WRN

 uP7ERR

 uP7CRT

Messages have variable arguments & format string.

This chapter describes trace/log format specifications.

A format specification, which consists of optional and required fields, has the following form:

Each field of the format specification is a character or a number that signifies a particular format option
or conversion specifier. The required type character specifies the kind of conversion to be applied to an
argument. The optional flags, width, and precision fields control additional format aspects. A basic
format specification contains only the percent sign and a type character.

Flags

In a format specification, the first optional field is flags. A flag directive is a character that specifies
output justification and output of signs, blanks, leading zeros, decimal points, and octal and hexadecimal
prefixes. More than one flag directive may appear in a format specification, and flags can appear in any
order.

Flag Meaning Default

- Left align the result within the given field width Right align

+ Use a sign (+ or –) to prefix the output value if it is of a
signed type

Sign appears only for negative
signed values (–).

space “ ” Use a blank to prefix the output value if it is signed and
positive. The blank is ignored if both the blank and +
flags appear.

No blank appears.

When it's used with the o, x, or X format, the # flag
uses 0, 0x, or 0X, respectively, to prefix any nonzero
output value.

No blank appears.

When it's used with the e, E, f, a or A format, the # flag
forces the output value to contain a decimal point.

Decimal point appears only if
digits follow it.

When it's used with the g or G format, the # flag forces
the output value to contain a decimal point and
prevents the truncation of trailing zeros.

Decimal point appears only if
digits follow it. Trailing zeros
are truncated.

Ignored when used with c, d, i, u, or s.

0 If width is prefixed by 0, leading zeros are added until
the minimum width is reached. If both 0 and – appear,
the 0 is ignored. If 0 is specified as an integer format (i,
u, x, X, o, d) and a precision specification is also
present—for example, %04.d—the 0 is ignored.

No padding.

%[flags][width][.precision][Size modifier]type

16 μP7 library

Width

In a format specification, the second optional field is the width specification. The width argument is a
non-negative decimal integer that controls the minimum number of characters that are output. If the
number of characters in the output value is less than the specified width, blanks are added to the left or
the right of the values—depending on whether the left alignment flag (-) is specified—until the
minimum width is reached. If width is prefixed by 0, leading zeros are added to integer or floating-point
conversions until the minimum width is reached, except when conversion is to an infinity or NAN.

The width specification never causes a value to be truncated. If the number of characters in the output
value is greater than the specified width, or if width is not given, all characters of the value are output,
subject to the precision specification.

If the width specification is an asterisk (*), an int argument from the argument list supplies the value.
The width argument must precede the value that's being formatted in the argument list, as shown in
this example:

A missing or small width value in a format specification does not cause the truncation of an output
value. If the result of a conversion is wider than the width value, the field expands to contain the
conversion result.

Precision

In a format specification, the third optional field is the precision specification. It consists of a period
(.) followed by a non-negative decimal integer that, depending on the conversion type, specifies the
number of string characters, the number of decimal places, or the number of significant digits to be
output.

Unlike the width specification, the precision specification can cause either truncation of the output
value or rounding of a floating-point value. If precision is specified as 0 and the value to be converted
is 0, the result is no characters output, as shown in this example:

If the precision specification is an asterisk (*), an int argument from the argument list supplies the
value. In the argument list, the precision argument must precede the value that's being formatted, as
shown in this example:

The type determines either the interpretation of precision or the default precision when precision is
omitted, as shown in the following table.

Type Meaning Default

a,A The precision specifies the number of digits after the
point.

Default precision is 6. If
precision is 0, no decimal point
is printed unless the # flag is
used.

d, i, u, o,
 x, X, b

The precision specifies the minimum number of digits to
be printed. If the number of digits in the argument is less
than precision, the output value is padded on the left
with zeros. The value is not truncated when the number
of digits exceeds precision.

Default precision is 1.

e, E The precision specifies the number of digits to be printed
after the decimal point. The last printed digit is rounded.

Default precision is 6. If
precision is 0 or the period

printf("%0*d", 2, 3); /* => 03 is output */

printf("%.0d", 0); /* => No characters output */

printf("%.*f", 3, 3.14159265); /* => 3.142 is output */

17 μP7 library

(.) appears without a number
following it, no decimal point
is printed.

f The precision value specifies the number of digits after
the decimal point. If a decimal point appears, at least one
digit appears before it. The value is rounded to the
appropriate number of digits.

Default precision is 6. If
precision is 0, or if the
period (.) appears without a
number following it, no
decimal point is printed.

g, G The precision specifies the maximum number of
significant digits printed.

Six significant digits are
printed, and any trailing zeros
are truncated.

s Not supported yet.
The precision specifies the maximum number of
characters to be printed. Characters in excess of
precision are not printed.

Characters are printed until a
null character is encountered.

Size

In a format specification, the 4th field is an argument size modifier.

The size field is optional for some argument types. When no size prefix is specified, the formatter
consumes integer arguments—for example, signed or unsigned char, short, int, long, and
enumeration types—as 32-bit int types, and floating-point arguments are consumed as 64-bit double
types. This matches the default argument promotion rules for variable argument lists.

Some types are different sizes in 32-bit and 64-bit code. For example, size_t is 32 bits long in code
compiled for x86, and 64 bits in code compiled for x64.

Size prefix Type specifier Size in bytes
hh d,b,i,o,u,x,X 1
h d,b,i,o,u,x,X 2

s 1 (ANSI string)

c 1 (ANSI char)
I32 d,b,i,o,u,x,X 4

l d,b,i,o,u,x,X 4

s Windows: 2 (UTF16)
Linux: 4 (UTF32)

c Windows: 2 (UTF16)
Linux: 4 (UTF32)

ll, I64 d,b,i,o,u,x,X 8
I,z,t d,b,i,o,u,x,X X64 System: 8

X32 System: 4
j d,b,i,o,u,x,X uintmax_t, intmax_t

It is not recommended to use this
size prefix due to compilers
specifics.

Type

A character that specifies the type of conversion to be applied. The conversion specifiers and their
meanings are:

Type
character

Argument Output format

c character character

https://www.viva64.com/en/t/0098/

18 μP7 library

d Integer Signed decimal integer.
b Integer Unsigned binary integer.

Warning: this type isn’t standard one!
i Integer Signed decimal integer.
o Integer Unsigned octal integer.
u Integer Unsigned decimal integer.
x Integer Unsigned hexadecimal integer; uses "abcdef."
X Integer Unsigned hexadecimal integer; uses "ABCDEF."
s String s: char argument is expected (UTF-8)

ls, ws: wchar_t argument is expected (UTF-16/UTF-32 – depends on
compiler)
hs: char argument is expected (ANSI)
hs: char argument is expected (ANSI)

e,E Floating-point The double argument is rounded and converted in the style
[-]d.ddde±dd where there is one digit before the decimal-point
character and the number of digits after it is equal to the precision;
if the precision is missing, it is taken as 6; if the precision is zero, no
decimal-point character appears. An E conversion uses the letter E
(rather than e) to introduce the exponent. The exponent always
contains at least two digits; if the value is zero, the exponent is 00.

f Floating-point The double argument is rounded and converted to decimal
notation in the style [-]ddd.ddd, where the number of digits after
the decimal-point character is equal to the precision specification.
If the precision is missing, it is taken as 6; if the precision is
explicitly zero, no decimal-point character appears. If a decimal
point appears, at least one digit appears before it.

g, G Floating-point The double argument is converted in style f or e (or F or E for G
conversions). The precision specifies the number of significant
digits. If the precision is missing, 6 digits are given; if the precision
is zero, it is treated as 1. Style e is used if the exponent from its
conversion is less than -4 or greater than or equal to the precision.
Trailing zeros are removed from the fractional part of the result; a
decimal point appears only if it is followed by at least one digit.

a, A Floating-point For a conversion, the double argument is converted to hexadecimal
notation (using the letters abcdef) in the style [-]0xh.hhhhp±; for A
conversion the prefix 0X, the letters ABCDEF, and the exponent
separator P is used. There is one hexadecimal digit before the
decimal point, and the number of digits after it is equal to the
precision. The default precision suffices for an exact
representation of the value if an exact representation in base 2
exists and otherwise is sufficiently large to distinguish values of
type double. The digit before the decimal point is unspecified for
nonnormalized numbers, and nonzero but otherwise unspecified
for normalized numbers.

p Pointer type Displays the argument as an address in hexadecimal digits.
The void * pointer argument is printed in hexadecimal (as if
by %#X or %#lX)

19 μP7 library

Limitations

Most of the limitations are driven by fact that μP7 pre-processor capable to work only with source code
and run-time state isn’t accessible, so in your source code you need to take in account next limitations:

 Please do not use function uP7TrcSent directly, instead use macros:
o uP7TRC
o uP7DBG
o uP7INF
o uP7WRN
o uP7ERR
o uP7CRT

Function uP7TrcSent has no format string, only variable arguments, but μP7 pre-processor need
to find and pars format string for further use and macros helping in that.

 Use only static string to specify:
o format (uP7TRC, uP7DBG, uP7INF, uP7WRN, uP7ERR, uP7CRT)
o Module name (uP7TrcRegisterModule)
o Counter name (uP7TelCreateCounter)

//Correct:

uP7ERR(0, hModule, "Value %u", 0xFFFFFFFF);

//Incorrect:

char *pFormat = "My Format %u";

uP7ERR(0, hModule, pFormat, 0xFFFFFFFF);

 Use only decimal trace ID (uP7TRC, uP7DBG, uP7INF, uP7WRN, uP7ERR, uP7CRT)

//Correct:

uP7ERR(0, hModule, "Value %u", 0xFFFFFFFF);

//Incorrect:

uP7ERR(0x0, hModule, "Value %u", 0xFFFFFFFF);

 Use only decimal or floating point telemetry values (uP7TelCreateCounter)

//Correct:

uP7TelCreateCounter("Counter", 0.0, 0.0, 1.0, 1.0, true, &hCounter1);

//Incorrect:

double dbMin = 0.0;

double dbMax = 1.0;

uP7TelCreateCounter("Counter", dbMin, dbMin, dbMax, dbMax, true, &hCounter1);

	Introduction
	Directory structure
	Design overview
	Memory consumption
	Integration guideline
	Create μP7 platform header
	Integrating μP7 into user firmware project
	Compiling μP7 preprocessor
	Using μP7 preprocessor
	Integrate μP7 proxy library

	P7 arguments
	Trace format string specification
	Flags
	Width
	Precision
	Size
	Type

	Limitations

